Образовательный портал для подготовки к экзаменам
Математика профильного уровня
Математика профильного уровня
Сайты, меню, вход, новости
Задания
Версия для печати и копирования в MS Word
На рисунке изображен график производной функции
определенной на интервале
Найдите промежутки возрастания функции
В ответе укажите сумму целых точек, входящих в эти промежутки.
Спрятать решение
Решение.
Промежутки возрастания данной функции f(x) соответствуют промежуткам, на которых ее производная неотрицательна, то есть промежуткам (−6; −5,2] и [2; 6). Данные промежутки содержат целые точки 2, 3, 4 и 5. Их сумма равна 14.
Ответ: 14.
Спрятать решение
·
·
Курс Д. Д. Гущина
·
Татьяна Захожая 22.10.2016 13:31
Здравствуйте! Как я понимаю, в точке х=2 производная равна нулю, следовательно, это точка минимума, то есть число 2 не включается в интервал, и тогда сумма равна 3+4+5=12
Сергей Никифоров
Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки присоединяются как к промежуткам возрастания, так и к промежуткам убывания, что полностью соответствует определению возрастающих и убывающих функций.
Фарит Ямаев 26.10.2016 18:50
Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.
Служба поддержки
Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции — все они возрастают на отрезке
Владлен Писарев 02.11.2016 22:21
Автор прав,но…
Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке [a;b]. Т.е. точка x=2 входит в данный промежуток.
Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.
Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) — входят.
Учитывая, что первая часть ЕГЭ для «средней группы детского сада», то наверное такие нюансы- перебор.
Отдельно, большое спасибо за «Решу ЕГЭ» всем сотрудникам- отличное пособие.
Сергей Никифоров
Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.
Ирина Ишмакова 20.11.2017 11:46
Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.
Александр Иванов
В заданиях 6429 и 7089 совершенно разные вопросы.
В одном про промежутки возрастания, а в другом про промежутки с положительной производной.
Противоречия нет.
Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.
A Z 28.01.2019 19:09
Коллеги, есть понятие возрастания в точке
(см. Фихтенгольц например)
и ваше понимание возрастания в точке x=2 противочет классическому определению.
Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.
В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.
Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.
Александр Иванов
Коллега.
Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.
В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке [2; 6) функция возрастает.
После нахождения промежутков просят найти какие целые числа попадают в эти промежутки.
В условии и в решении не идёт речи о возрастании в точке.
Речь в задании о промежутках возрастания.
Maria Zhokhova 07.12.2019 20:11
Господа, добрый день!
На мой взгляд, в решении ошибка: x=2 не должен включаться в решение. В учебнике Ильина, Позняка «Основы математического анализа» (гл. 8 Основные теоремы о непрерывных функциях, § 7 Возрастание (убывание) функции в точке (стр 260 в 7-м издании 2005 года) дано такое определение:
Говорят, что функции f(x) возрастает (убывает) в точке c, если найдется такая окрестность точки c, в пределах которой f(x)>f(c) при x>c и f(x)<f(c) при x<c (f(x)<f(c) при x>c и f(x)>f(c) при x<c).
В нашем случае точка x=2 не удовлетворяет этому условию. В пояснениях и комментариях не приведено ни одной ссылки на достоверный источник. Это учебник для вузов, в том числе для МГУ. Создан на основе лекций, читавшихся на физическом факультете и ВМК МГУ еще в советское время. Учебник МГУ представляется мне достаточным основанием для изменения решения. Спасибо.
Открытый банк заданий mathege.ru — тренажер задания 6 профильного ЕГЭ по математике-2022 (с ответами). Все прототипы задания 6 на исследование функций. Это задание на использование свойств производной при анализе функций, либо на геометрический смысл производной, либо на физический смысл производной, либо на первообразную функции. Номер заданий соответствует номеру заданий в базе mathege.ru.
Использование свойств производной для исследования функций
27487 На рисунке изображен график функции y = f(x), определенной на интервале (-6; 8). Определите количество целых точек, в которых производная функции положительна.
27488. На рисунке изображён график функции y = f(x), определенной на интервале (-5;5). Определите количество целых точек, в которых производная функции отрицательна.
27490. На рисунке изображен график функции y = f(x), определенной на интервале (-2; 12). Найдите сумму точек экстремума функции f(x).
27491. На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 3). В какой точке отрезка [-3; 2] функция f(x) принимает наибольшее значение?
27492. На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7;-3] функция f(x) принимает наименьшее значение?
27494. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-6;9].
27495. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-18; 6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [-13;1].
27496. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-11; 11). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [-10;10].
27497. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-7; 4). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.
27498. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-5; 7). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.
27499. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.
27500. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.
27502. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-4; 8). Найдите точку экстремума функции f(x), принадлежащую отрезку [-2; 6 ].
119971. На рисунке изображен график функции f(x), определенной на интервале (-5;5). Найдите количество точек, в которых производная функции f(x) равна 0.
317539. На рисунке изображён график функции y = f(x) и восемь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8. В скольких из этих точек производная функции f(x) положительна?
317540. На рисунке изображён график функции y = f(x) и двенадцать точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12. В скольких из этих точек производная функции f(x) отрицательна?
317541. На рисунке изображён график y = f'(x) — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, x4, x5, x6, x7, x8. Сколько из этих точек лежит на промежутках возрастания функции f(x)?
317542. На рисунке изображён график y = f'(x) — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, x4, x5, x6, x7, x8. Сколько из этих точек лежит на промежутках убывания функции f(x)?
Геометрический смысл производной
27485. Прямая y = 7x — 5 параллельна касательной к графику функции y = x2 + 6x — 8. Найдите абсциссу точки касания.
27486. Прямая y = -4x — 11 является касательной к графику функции y = x3 + 7x2 + 7x — 6. Найдите абсциссу точки касания.
27489. На рисунке изображен график функции y = f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.
27501. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -2x -11 или совпадает с ней.
27503. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
27504. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
27505. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
27506. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
40130. На рисунке изображен график y = f'(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна прямой y = 2x — 2 или совпадает с ней.
40131. На рисунке изображен график y = f'(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна оси абсцисс или совпадает с ней.
119972. Прямая y = 3x +1 является касательной к графику функции ax2 + 2x + 3. Найдите a.
119973. Прямая y = -5x + 8 является касательной к графику функции 28x2 + bx + 15. Найдите b, учитывая, что абсцисса точки касания больше 0.
119974. Прямая y = 3x + 4 является касательной к графику функции 3x2 — 3x + c. Найдите c.
317543. На рисунке изображён график функции y = f(x). На оси абсцисс отмечены точки −2, −1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
317544. На рисунке изображён график функции y = f(x). На оси абсцисс отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.
[s60u_expand more_text=»Ответ» less_text=»Свернуть» height=»1″ hide_less=»no» text_color=»#333333″ link_color=»#0088FF» link_style=»default» link_align=»left» more_icon=»» less_icon=»» class=»»]
4
[/su_expand]
Физический смысл производной
119975. Материальная точка движется прямолинейно по закону x(t) = 6t2 — 48t +17, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 9 с.
119976. Материальная точка движется прямолинейно по закону x(t) = 1/2t3 — 3t2 + 2t, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 6 с.
119977. Материальная точка движется прямолинейно по закону x(t) = -t4 + 6t3 + 5t + 23, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3 с.
119978. Материальная точка движется прямолинейно по закону x(t) = t2 -13t +23, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 3 м/с?
119979. Материальная точка движется прямолинейно по закону x(t) = 1/3t3 — 3t2 — 5t + 3, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 2 м/с?
Первообразная
323077. На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (-3;5). Найдите количество решений уравнения f(x) = 0 на отрезке [-2;4].
323078. На рисунке изображён график функции y = f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) — F(2), где F(x) — одна из первообразных функции f(x).
323079. На рисунке изображён график некоторой функции y = f(x). Функция F(x) = x3 + 30x2 + 302x — 15/8 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
323080. На рисунке изображён график некоторой функции y = f(x). Функция F(x)= -x3 — 27x2 — 240x — 8 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.
������� ����������
������� ������� ����������
���� ����������� � ���� ������������ �������� �������, � ������� ��������� �������������� ������� � ������������� ������� ��� ���������� � ���������� ������� �� ����������.
������-������������ ����������
��������� � ����������-������������ ������������, ������� ���������, ���������, ��������� ���������� ������, �������� �����, �����������.
����� � ��������
������� � ����� �������� �������������� ����� � ��������, �������� ������� �� ���� � ��������� ��� �������, ������ ��� ������� ������� ��������� ����� ������� ���������� �������.
��������-������
������ �������� �� ����������� ����� � �������� ������������� ����������� � ��������-������� �� �����, � ������� ����� ����������� ��������� � ������ ������, ���������; �������� (� ��������) ������ ����� ������� ���� ������.
��������
� ��������� ����� 12600 ������� �� ����� ��������� ����� ����������, ���� ����������� ������ ������������ ����������� ������� � ��������� ��������� � �����������.
��������� � �����
������� ������, ������������� ����� � ������ ������� �������, ������� ������ ������������ �� ������, �������� � ���������.
��������
������������ �����
���������� � ��������� � ������� ���������������� ��������� � ������������ ������, ������� ����������� �������� ������������� ������������.
��������� �� �������
������ �����, �������������� ��������������,
�������, ��������, �������������� ������,
�������, �������,
�������������,
����������, �����������, �������������
�����������
��� ��������� ������� ������� �� ���� ������-������������ �������� �������� ���������� ������ ��������� �����������.
� �����
������������ ����� — ��� ������� �����������, �������� �������������� ����, ������� ������ ���������, ���������� ������ ���������� ��.
�����-��������
������� ��������
������� �������� ����������� | �����-��������� |
�������� ����� ���������� | ������������ |
���������� ������ ����������� | �����-��������� |
��������� ������ �������� | �������� ����� ������� |
������� ������� ���������� | �������� |
��������� ��� �������� | ������� |
���������� ��������� ������������ | ���������� |
�������� ������� ������� | ��������� |
����ԣ�� �.�.-�������� �.�. | ������ |
������ ������ ���������� | ������������ |
��������� ������� ������������� | ������-���, ���������� ����� �� |
��������� ����� ��������� | �����-��������� |
�������� ����� ���������� | ������� |
���������� ������ ������������� | ������-��� |
������� ���� ���������� | ��� |
������� ������ ���������� | ������� |
������� �������� ���������� | ������� |
�������� ���� ����������� | �����-��������� |
������� ������� ���������� | �����-��������� |
�������� ������� ���������� | ������������ |
������ � �����
�� ������ ������ ������ ������������� �����, ���������� ��� ������, ��� �����-���� �������������� ������.
Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.
Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.
Тренировочные варианты ЕГЭ 2022 по математике (профиль)
egemath.ru | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
variant 8 | скачать |
variant 9 | скачать |
variant 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 19 | скачать |
variant 20 | скачать |
yagubov.ru | |
вариант 21 | ege2022-yagubov-prof-var21 |
вариант 22 | ege2022-yagubov-prof-var22 |
вариант 23 | ege2022-yagubov-prof-var23 |
вариант 24 | ege2022-yagubov-prof-var24 |
вариант 25 | ege2022-yagubov-prof-var25 |
вариант 26 | ege2022-yagubov-prof-var26 |
вариант 27 | ege2022-yagubov-prof-var27 |
вариант 28 | ege2022-yagubov-prof-var28 |
Досрочный Москва 28.03.2022 | скачать |
egemathschool.ru | |
вариант 1 | ответ |
вариант 2 | ответ |
вариант 3 | ответ |
вариант 4 | ответ |
ЕГЭ 100 баллов (с решениями) | |
Вариант 1 | скачать |
Вариант 2 | скачать |
Вариант 3 | скачать |
Вариант 4 | скачать |
Вариант 5 | скачать |
Вариант 6 | скачать |
Вариант 7 | скачать |
Вариант 8 | скачать |
Вариант 9 | скачать |
Вариант 10 | скачать |
variant 11 | скачать |
variant 12 | скачать |
variant 13 | скачать |
variant 14 | скачать |
variant 15 | скачать |
variant 16 | скачать |
variant 17 | скачать |
variant 18 | скачать |
variant 20 | скачать |
variant 21 | скачать |
variant 23 | скачать |
variant 24 | скачать |
variant 25 | скачать |
variant 26 | скачать |
variant 29 | скачать |
variant 30 | скачать |
math100.ru (с ответами) | |
Вариант 140 | скачать |
Вариант 141 | скачать |
Вариант 142 | скачать |
Вариант 143 | math100-ege22-v143 |
Вариант 144 | math100-ege22-v144 |
Вариант 145 | math100-ege22-v145 |
Вариант 146 | math100-ege22-v146 |
variant 147 | math100-ege22-v147 |
variant 148 | math100-ege22-v148 |
variant 149 | math100-ege22-v149 |
variant 150 | math100-ege22-v150 |
variant 151 | math100-ege22-v151 |
variant 152 | math100-ege22-v152 |
variant 153 | math100-ege22-v153 |
variant 154 | math100-ege22-v154 |
variant 155 | math100-ege22-v155 |
variant 156 | math100-ege22-v156 |
variant 157 | math100-ege22-v157 |
variant 158 | math100-ege22-v158 |
variant 159 | math100-ege22-v159 |
variant 160 | math100-ege22-v160 |
variant 161 | math100-ege22-v161 |
variant 162 | math100-ege22-v162 |
variant 163 | math100-ege22-v163 |
variant 164 | math100-ege22-v164 |
variant 165 | math100-ege22-v165 |
variant 166 | math100-ege22-v166 |
variant 167 | math100-ege22-v167 |
variant 168 | math100-ege22-v168 |
variant 169 | math100-ege22-v169 |
variant 170 | math100-ege22-v170 |
variant 171 | math100-ege22-v171 |
variant 172 | math100-ege22-v172 |
variant 173 | math100-ege22-v173 |
variant 174 | math100-ege22-v174 |
alexlarin.net | |
Вариант 358 |
скачать |
Вариант 359 | скачать |
Вариант 360 | скачать |
Вариант 361 | скачать |
Вариант 362 | проверить ответы |
Вариант 363 | проверить ответы |
Вариант 364 | проверить ответы |
Вариант 365 | проверить ответы |
Вариант 366 | проверить ответы |
Вариант 367 | проверить ответы |
Вариант 368 | проверить ответы |
Вариант 369 | проверить ответы |
Вариант 370 | проверить ответы |
Вариант 371 | проверить ответы |
Вариант 372 | проверить ответы |
Вариант 373 | проверить ответы |
Вариант 374 | проверить ответы |
Вариант 375 | проверить ответы |
Вариант 376 | проверить ответы |
Вариант 377 | проверить ответы |
Вариант 378 | проверить ответы |
Вариант 379 | проверить ответы |
Вариант 380 | проверить ответы |
Вариант 381 | проверить ответы |
Вариант 382 | проверить ответы |
Вариант 383 | проверить ответы |
Вариант 384 | проверить ответы |
Вариант 385 | проверить ответы |
Вариант 386 | проверить ответы |
Вариант 387 | проверить ответы |
Вариант 388 | проверить ответы |
vk.com/ekaterina_chekmareva (задания 1-12) | |
Вариант 1 | ответы |
Вариант 2 | |
Вариант 3 | |
Вариант 4 | |
Вариант 5 | |
Вариант 6 | |
Вариант 7 | ответы |
Вариант 8 | |
Вариант 9 | |
Вариант 10 | |
vk.com/matematicalate | |
Вариант 1 | matematikaLite-prof-ege22-var1 |
Вариант 2 | matematikaLite-prof-ege22-var2 |
Вариант 3 | matematikaLite-prof-ege22-var3 |
Вариант 4 | matematikaLite-prof-ege22-var4 |
Вариант 5 | matematikaLite-prof-ege22-var5 |
Вариант 6 | matematikaLite-prof-ege22-var6 |
Вариант 7 | matematikaLite-prof-ege22-var7 |
Вариант 8 | matematikaLite-prof-ege22-var8 |
vk.com/pro_matem | |
variant 1 | pro_matem-prof-ege22-var1 |
variant 2 | pro_matem-prof-ege22-var2 |
variant 3 | pro_matem-prof-ege22-var3 |
variant 4 | разбор |
variant 5 | разбор |
vk.com/murmurmash | |
variant 1 | otvet |
variant 2 | otvet |
→ Купить сборники тренировочных вариантов ЕГЭ 2022 по математике |
Структура варианта КИМ ЕГЭ
Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:
– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;
– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).
Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.
Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.
Связанные страницы:
Средний балл ЕГЭ 2021 по математике
Решение задач с параметром при подготовке к ЕГЭ
Изменения в КИМ ЕГЭ 2022 года по математике
Купить сборники типовых вариантов ЕГЭ по математике
Как решать экономические задачи ЕГЭ по математике профильного уровня?
3479 | В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N — середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO. а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией. б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=9, BC=7, SO=6, а прямая SO перпендикулярна прямой AD |
В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 13 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Задачи-Аналоги 3357 3361 | |
3477 | В параллелограмме ABCD угол ВАС вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что AE=CE. а) Докажите, что AL:BC=AB:BC. б) Найдите EL, если AC=21, tg /_BCA=0,4 |
В параллелограмме ABCD угол ВАС вдвое раза больше угла CAD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 16 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Санкт-Петербург, Центр # Задача-Аналог 3356 | |
3385 | Точка O - точка пересечения диагоналей грани CDD1C1 куба ABCDA1B1C1D1. Плоскость DA1C1 пересекает диагональ BD1 в точке F. а) Докажите, что BF:FD1=A1F:FO. б) Точки M и N - середины ребер AB и AA1, соответственно. Найдите угол между прямой MN и плоскостью DA1C1 |
Точка O - точка пересечения диагоналей грани CDD1C1 куба ABCDA1B1C1D1 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург | |
3384 | В треугольнике ABC точки M и N — середины сторон AB и BC соответственно. Известно, что около четырехугольника AMNC можно описать окружность. а) Докажите, что треугольник ABC — равнобедренный. б) На стороне AС отмечена точка F, такая что /_AFB=135^@. Отрезок BF пересекает отрезок MN в точке E. Найдите радиус окружности, описанной около четырёхугольника AMNC, если /_ABC =120^@ и EF=6sqrt2 |
В треугольнике ABC точки M и N — середины сторон AB и BC соответственно ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Санкт-Петербург, Центр | |
3379 | Найдите все значения параметра a, при каждом из которых уравнение x^2+a^2+2x-4a=abs(4x+2a). имеет более двух различных корней |
Найдите все значения параметра a, при каждом из которых уравнение x2 +a2 +2x -4a = |4x+2a| имеет более двух различных корней ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 17 Санкт-Петербург | |
3378 | В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND1=1:2. Точка O - середина отрезка CB1. а) Докажите, что прямая NO проходит через точку A. б) Найдите объём параллелепипеда ABCDA1B1C1D1, если длина отрезка NO равна расстоянию между прямыми BD1 и CB1 и равна sqrt2 |
В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND1=1:2 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Москва, Центр, Санкт-Петербург | |
3377 | На стороне острого угла с вершиной A отмечена точка B. Из точки B на биссектрису и другую сторону угла опущены перпендикуляры BC и BD соответственно. а) Докажите, что AC^2+CB^2=AD^2+DB^2. б) Прямые AC и BD пересекаются в точке T. Найдите отношение AT:TC, если cos/_ ABC = 3/8 |
На стороне острого угла с вершиной A отмечена точка B ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Центр, Москва, Санкт-Петербург | |
3366 | Имеются три коробки: в первой коробке — 64 камня, во второй — 77 камней, а в третьей — пусто. За один ход разрешается взять по камню из двух коробок и положить в оставшуюся. Сделали некоторое количество таких ходов. а) Может ли в первой коробке оказаться 64 камня, во второй — 59, в третьей — 18? б) Может ли в третьей коробке оказаться 141 камень? в) В первой коробке оказался один камень. Найдите наибольшее возможное количество камней в третьей коробке. |
Имеются три коробки: в первой коробке — 64 камня, во второй — 77 камней, а в третьей — пусто ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 18 Санкт-Петербург, Центр | |
3365 | В июле 2026 года планируется взять кредит в размере 880 тыс. руб. Условия возврата таковы: – каждый январь долг возрастает на 20% по сравнению с концом предыдущего года; – с февраля по июнь необходимо выплатить часть долга; – в июле 2027, 2028 и 2029 годов долг остается равным 880 тыс. руб. – суммы выплат 2030 и 2031 годов равны; – к июлю 2031 года долг будет выплачен полностью Найдите разницу между первым и последним платежами |
В июле 2026 года планируется взять кредит в размере 880 тыс. руб ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 15 Москва, Центр | |
3364 | SABCD — правильная четырёхугольная пирамида, точка M — середина ребра SA, точка N лежит на ребре SB, SN:NB=1:2. а) Докажите, что плоскость CMN параллельна прямой SD. б) Найдите площадь сечения пирамиды плоскостью CMN, если все рёбра пирамиды SABCD равны 6 |
Дана правильная пирамида SABCD, точка M — середина ребра SA, точка N лежит на ребре SB, SN:NB=1:2 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Москва, Центр # Решение через теорему Менелая | |
- ЗАДАЧИ ЕГЭ С ОТВЕТАМИ
- АНГЛИЙСКИЙ без ГРАНИЦ
2012-07-25
Александр
Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр «Час ЕГЭ», попробуйте скачать
Firefox
Проект «Математика? Легко!!!« для вас!
НЕ ОТКЛАДЫВАЙ! Заговори на английском!
ДОЛОЙ обидные ошибки на ЕГЭ!!
Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!
Конструктор упражнений для позвоночника!
Отзывов (14)
-
Виктор
2013-02-28 в 21:25
Ещё раз здравствуйте Александр,это опять я,Виктор.В подобных заданиях с таким условием (только другие числовые данные) я нашел закономерность её решения.78 прибавляю 13 = 91. Теперь нахожу два числа,которые в сумме дадут 91,а разница между ними должна быть 13.И это числа 52 и 39. Ну и тут уже ясно какой ответ (у меня всегда было наибольшее число).Данный способ у меня всегда работает. Может ли это быть случайность,и способ когда-нибудь подведет?
Ответить
-
Александр Крутицких
2013-03-01 в 10:11
Виктор, возможно такая закономерность и есть, но я не смог проанализировать и уловить её суть. В любом случае рекомендую при решении задач идти через понимание рассматриваемого процесса (движение, работа, прогрессии и прочее), тогда ошибки точно не будет. А сами «хитрые» приёмы (закономерности) применять только для экономии времени.
Ответить
-
-
Виктор
2013-03-01 в 11:56
Александр,у меня есть вопрос.Вот вы нашли x1 и x2.52 и 39.Это скорость первого и второго автомобилистов,или это два решения только первого автомобилиста,из которых только одно верно?
Ответить
-
Александр Крутицких
2013-03-01 в 14:51
Это просто два решения задачи — и 39 и 52 это скорость первого автомобилиста. То есть при скорости первого 52 и 39 км/ч поставленное условие будет выполняться. Оба верны. Просто в условии ещё наложено дополнительное ограничение (скорость больше 48), поэтому мы выбираем 52.
Ответить
-
-
Виктор
2013-03-01 в 20:24
Все ясно.Думаю,проще решать сразу через дискриминант.91 мы получили путём 78 плюс 13,а 2028,это мы 78 умножили на 13 и ещё на два,так?
Ответить
-
Александр Крутицких
2013-03-01 в 21:35
Да, 2028 получили именно так, а 91 нет. 91 мы получили в ходе преобразований в уравнении. Кстати, спасибо, что обратили внимание на эту задачу, увидел «неточность» вместо плюса поставил минус перед 78 на 13. Исправлю.
Ответить
-
-
Виктор
2013-03-01 в 22:36
Так,а откуда мы взяли 0.5 в самом начале решения?Это как бы первая и вторая половина пути 2 автомобилиста?
Ответить
-
Александр Крутицких
2013-03-01 в 22:39
Да! Так и есть.
Ответить
-
-
Виктор
2013-03-01 в 22:47
Я думаю,что теперь я нашел быстрый способ решения именно такой задачи.
0.5 * 78 = 39
0.5 *13 = 6.5
39 + 6.5 = 45.5
45.5 * 2 = 91.
Ну и дальше по дискриминанту.Такой способ будет работать в таких задачах?
Ответить
-
Александр Крутицких
2013-03-02 в 05:13
Виктор, у этого способа я системы и закономерности не обнаружил. Советую, всё-таки, практиковаться в правильном составлении уравнения и навыке его быстрого решения. Уйдёт чуть-чуть больше времени, но решите гарантировано без ошибки. С уважением!!!
Ответить
-
-
Виктор
2013-04-03 в 01:44
Так,а почему мы 45.5 и 1014 умножаем именно на два?И всегда ли нужно это делать?
Ответить
-
Александр Крутицких
2013-04-04 в 10:58
Нет необязательно, можно вычислять с любыми коэффициентами, но удобнее когда при х в квадрате стоит целое число.
Ответить
-
-
Виктор
2013-04-24 в 14:00
Александр,какую задачу из B13 вы считаете самой сложной?
Ответить
-
Александр Крутицких
2013-04-25 в 14:44
Про трёх велосипедистов (есть отдельная статья на сайте), и про две кампании 99587 (запутаться легко).
Ответить
-
Добавить комментарий
*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.
- РубрикиРубрики
- Задачи по номерам!
№1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16
- МЕТКИ
БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие
- ОСТЕОХОНДРОЗУ-НЕТ!