Егэ по математике 6429


Образовательный портал для подготовки к экзаменам

Математика профильного уровня

Математика профильного уровня

Сайты, меню, вход, новости

Задания

Версия для печати и копирования в MS Word

На рисунке изображен график производной функции f левая круглая скобка x правая круглая скобка , определенной на интервале  левая круглая скобка минус 6; 6 правая круглая скобка . Найдите промежутки возрастания функции f левая круглая скобка x правая круглая скобка . В ответе укажите сумму целых точек, входящих в эти промежутки.

Спрятать решение

Решение.

Промежутки возрастания данной функции f(x) соответствуют промежуткам, на которых ее производная неотрицательна, то есть промежуткам (−6; −5,2] и [2; 6). Данные промежутки содержат целые точки 2, 3, 4 и 5. Их сумма равна 14.

Ответ: 14.

Спрятать решение

·

·

Курс Д. Д. Гущина

·

Татьяна Захожая 22.10.2016 13:31

Здравствуйте! Как я понимаю, в точке х=2 производная равна нулю, следовательно, это точка минимума, то есть число 2 не включается в интервал, и тогда сумма равна 3+4+5=12

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции y=|x|, y=x в квадрате , y=x в кубе — все они возрастают на отрезке  левая квадратная скобка 0; 1 правая квадратная скобка .

Владлен Писарев 02.11.2016 22:21

Автор прав,но…

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке [a;b]. Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) — входят.

Учитывая, что первая часть ЕГЭ для «средней группы детского сада», то наверное такие нюансы- перебор.

Отдельно, большое спасибо за «Решу ЕГЭ» всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Коллега.

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке [2; 6) функция возрастает.

После нахождения промежутков просят найти какие целые числа попадают в эти промежутки.

В условии и в решении не идёт речи о возрастании в точке.

Речь в задании о промежутках возрастания.

Maria Zhokhova 07.12.2019 20:11

Господа, добрый день!

На мой взгляд, в решении ошибка: x=2 не должен включаться в решение. В учебнике Ильина, Позняка «Основы математического анализа» (гл. 8 Основные теоремы о непрерывных функциях, § 7 Возрастание (убывание) функции в точке (стр 260 в 7-м издании 2005 года) дано такое определение:

Говорят, что функции f(x) возрастает (убывает) в точке c, если найдется такая окрестность точки c, в пределах которой f(x)>f(c) при x>c и f(x)<f(c) при x<c (f(x)<f(c) при x>c и f(x)>f(c) при x<c).

В нашем случае точка x=2 не удовлетворяет этому условию. В пояснениях и комментариях не приведено ни одной ссылки на достоверный источник. Это учебник для вузов, в том числе для МГУ. Создан на основе лекций, читавшихся на физическом факультете и ВМК МГУ еще в советское время. Учебник МГУ представляется мне достаточным основанием для изменения решения. Спасибо.

Открытый банк заданий mathege.ru — тренажер задания 6 профильного ЕГЭ по математике-2022 (с ответами). Все прототипы задания 6 на исследование функций. Это задание на использование свойств производной при анализе функций, либо на геометрический смысл производной, либо на физический смысл производной, либо на первообразную функции. Номер заданий соответствует номеру заданий в базе mathege.ru.

Использование свойств производной для исследования функций

27487 На рисунке изображен график функции y = f(x), определенной на интервале (-6; 8). Определите количество целых точек, в которых производная функции положительна.

27488. На рисунке изображён график функции y = f(x), определенной на интервале (-5;5). Определите количество целых точек, в которых производная функции отрицательна.

27490. На рисунке изображен график функции y = f(x), определенной на интервале (-2; 12). Найдите сумму точек экстремума функции f(x).

27491. На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 3). В какой точке отрезка [-3; 2] функция f(x) принимает наибольшее значение?

27492. На рисунке изображён график y = f'(x) — производной функции f(x), определенной на интервале (-8; 4). В какой точке отрезка [-7;-3] функция f(x) принимает наименьшее значение?

27494. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x), принадлежащих отрезку [-6;9].

27495. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-18; 6). Найдите количество точек минимума функции f(x), принадлежащих отрезку [-13;1].

27496. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-11; 11). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [-10;10].

27497. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-7; 4). Найдите промежутки возрастания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

27498. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-5; 7). Найдите промежутки убывания функции f(x). В ответе укажите сумму целых точек, входящих в эти промежутки.

27499. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-11; 3). Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.

27500. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-2; 12). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

27502. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-4; 8). Найдите точку экстремума функции f(x), принадлежащую отрезку [-2; 6 ].

119971. На рисунке изображен график функции f(x), определенной на интервале (-5;5). Найдите количество точек, в которых производная функции f(x) равна 0.

317539. На рисунке изображён график функции y = f(x) и восемь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8. В скольких из этих точек производная функции f(x) положительна?

317540. На рисунке изображён график функции y = f(x) и двенадцать точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12. В скольких из этих точек производная функции f(x) отрицательна?

317541. На рисунке изображён график y = f'(x) — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, x4, x5, x6, x7, x8. Сколько из этих точек лежит на промежутках возрастания функции f(x)?

317542. На рисунке изображён график y = f'(x) — производной функции f(x). На оси абсцисс отмечены восемь точек: x1, x2, x3, x4, x5, x6, x7, x8. Сколько из этих точек лежит на промежутках убывания функции f(x)?

Геометрический смысл производной

27485. Прямая y = 7x — 5 параллельна касательной к графику функции y = x2 + 6x — 8. Найдите абсциссу точки касания.

27486. Прямая y = -4x — 11 является касательной к графику функции y = x3 + 7x2 + 7x — 6. Найдите абсциссу точки касания.

27489. На рисунке изображен график функции y = f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.

27501. На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (-10; 2). Найдите количество точек, в которых касательная к графику функции f(x) параллельна прямой y = -2x -11 или совпадает с ней.

27503. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

27504. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

27505. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

27506. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

40130. На рисунке изображен график y = f'(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна прямой y = 2x — 2 или совпадает с ней.

40131. На рисунке изображен график y = f'(x) — производной функции f(x). Найдите абсциссу точки, в которой касательная к графику y = f(x) параллельна оси абсцисс или совпадает с ней.

119972. Прямая y = 3x +1 является касательной к графику функции ax2 + 2x + 3. Найдите a.

119973. Прямая y = -5x + 8 является касательной к графику функции 28x2 + bx + 15. Найдите b, учитывая, что абсцисса точки касания больше 0.

119974. Прямая y = 3x + 4 является касательной к графику функции 3x2 — 3x + c. Найдите c.

317543. На рисунке изображён график функции y = f(x). На оси абсцисс отмечены точки −2, −1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.

317544. На рисунке изображён график функции y = f(x). На оси абсцисс отмечены точки −2, −1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

[s60u_expand more_text=»Ответ» less_text=»Свернуть» height=»1″ hide_less=»no» text_color=»#333333″ link_color=»#0088FF» link_style=»default» link_align=»left» more_icon=»» less_icon=»» class=»»]
4
[/su_expand]

Физический смысл производной

119975. Материальная точка движется прямолинейно по закону x(t) = 6t2 — 48t +17, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 9 с.

119976. Материальная точка движется прямолинейно по закону x(t) = 1/2t3 — 3t2 + 2t, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 6 с.

119977. Материальная точка движется прямолинейно по закону x(t) = -t4 + 6t3 + 5t + 23, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3 с.

119978. Материальная точка движется прямолинейно по закону x(t) = t2 -13t +23, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 3 м/с?

119979. Материальная точка движется прямолинейно по закону x(t) = 1/3t3 — 3t2 — 5t + 3, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 2 м/с?

Первообразная 

323077. На рисунке изображён график функции y = F(x) — одной из первообразных функции f(x), определённой на интервале (-3;5). Найдите количество решений уравнения f(x) = 0 на отрезке [-2;4].

323078. На рисунке изображён график функции y = f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(8) — F(2), где F(x) — одна из первообразных функции f(x).

323079. На рисунке изображён график некоторой функции y = f(x). Функция F(x) = x3 + 30x2 + 302x — 15/8 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

323080. На рисунке изображён график некоторой функции y = f(x). Функция F(x)= -x3 — 27x2 — 240x — 8 — одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

������� ����������

��������-������� ������� ����������

������� ������� ����������

���� ����������� � ���� ������������ �������� �������, � ������� ��������� �������������� ������� � ������������� ������� ��� ���������� � ���������� ������� �� ����������.

������-������������ ����������

������-������������ ����������

��������� � ����������-������������ ������������, ������� ���������, ���������, ��������� ���������� ������, �������� �����, �����������.

����� � ��������

����� � ��������

������� � ����� �������� �������������� ����� � ��������, �������� ������� �� ���� � ��������� ��� �������, ������ ��� ������� ������� ��������� ����� ������� ���������� �������.

��������-������

��������-������

������ �������� �� ����������� ����� � �������� ������������� ����������� � ��������-������� �� �����, � ������� ����� ����������� ��������� � ������ ������, ���������; �������� (� ��������) ������ ����� ������� ���� ������.

�������� �� ����������

��������

� ��������� ����� 12600 ������� �� ����� ��������� ����� ����������, ���� ����������� ������ ������������ ����������� ������� � ��������� ��������� � �����������.

��������� �  ����� ����������

��������� � �����

������� ������, ������������� ����� � ������ ������� �������, ������� ������ ������������ �� ������, �������� � ���������.

��������

������ ��������������� ������� (���) �� ����������

������������ �����, ���, ���

������������ �����

���������� � ��������� � ������� ���������������� ��������� � ������������ ������, ������� ����������� �������� ������������� ������������.

��������� �� �������

��������� �� �������

������ �����, �������������� ��������������, 
�������, ��������, �������������� ������, 
�������, �������, 
�������������, 
����������, �����������, �������������

��������� �� ���������

�������� �� ����������

�����������

����������� �������� ����������

��� ��������� ������� ������� �� ���� ������-������������ �������� �������� ���������� ������ ��������� �����������.

� �����

��� ������� �����������

������������ ����� — ��� ������� �����������, �������� �������������� ����, ������� ������ ���������, ���������� ������ ���������� ��.

�����-��������

temaplan.ru

������� ��������

������� �������� ����������� �����-���������
�������� ����� ���������� ������������
���������� ������ ����������� �����-���������
��������� ������ �������� �������� ����� �������
������� ������� ���������� ��������
��������� ��� �������� �������
���������� ��������� ������������ ����������
�������� ������� ������� ���������
����ԣ�� �.�.-�������� �.�. ������
������ ������ ���������� ������������
��������� ������� ������������� ������-���, ���������� ����� ��
��������� ����� ��������� �����-���������
�������� ����� ���������� �������
���������� ������ ������������� ������-���
������� ���� ���������� ���
������� ������ ���������� �������
������� �������� ���������� �������
�������� ���� ����������� �����-���������
������� ������� ���������� �����-���������
�������� ������� ���������� ������������

������ � �����

�� ������ ������ ������ ������������� �����, ���������� ��� ������, ��� �����-���� �������������� ������.

Skip to content

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.

Тренировочные варианты профильного ЕГЭ 2023 по математике с ответами.admin2023-03-05T21:56:54+03:00

Используйте LaTeX для набора формулы

Пробные и тренировочные варианты по математике профильного уровня в формате ЕГЭ 2022 из различных источников.

 Тренировочные варианты ЕГЭ 2022 по математике (профиль)

egemath.ru
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
variant 8 скачать
variant 9 скачать
variant 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 19 скачать
variant 20 скачать
yagubov.ru
вариант 21 ege2022-yagubov-prof-var21
вариант 22 ege2022-yagubov-prof-var22
вариант 23 ege2022-yagubov-prof-var23
вариант 24 ege2022-yagubov-prof-var24
вариант 25 ege2022-yagubov-prof-var25
вариант 26 ege2022-yagubov-prof-var26
вариант 27 ege2022-yagubov-prof-var27
вариант 28 ege2022-yagubov-prof-var28
Досрочный Москва 28.03.2022 скачать
egemathschool.ru
вариант 1 ответ
вариант 2 ответ
вариант 3 ответ
вариант 4 ответ
ЕГЭ 100 баллов (с решениями) 
Вариант 1 скачать
Вариант 2 скачать
Вариант 3 скачать
Вариант 4 скачать
Вариант 5 скачать
Вариант 6 скачать
Вариант 7 скачать
Вариант 8 скачать
Вариант 9 скачать
Вариант 10 скачать
variant 11 скачать
variant 12 скачать
variant 13 скачать
variant 14 скачать
variant 15 скачать
variant 16 скачать
variant 17 скачать
variant 18 скачать
variant 20 скачать
variant 21 скачать
variant 23 скачать
variant 24 скачать
variant 25 скачать
variant 26 скачать
variant 29 скачать
variant 30 скачать
math100.ru (с ответами) 
Вариант 140 скачать
Вариант 141 скачать
Вариант 142 скачать
Вариант 143 math100-ege22-v143
Вариант 144 math100-ege22-v144
Вариант 145 math100-ege22-v145
Вариант 146 math100-ege22-v146
variant 147 math100-ege22-v147
variant 148 math100-ege22-v148
variant 149 math100-ege22-v149
variant 150 math100-ege22-v150
variant 151 math100-ege22-v151
variant 152 math100-ege22-v152
variant 153 math100-ege22-v153
variant 154 math100-ege22-v154
variant 155 math100-ege22-v155
variant 156 math100-ege22-v156
variant 157 math100-ege22-v157
variant 158 math100-ege22-v158
variant 159 math100-ege22-v159
variant 160 math100-ege22-v160
variant 161 math100-ege22-v161
variant 162 math100-ege22-v162
variant 163 math100-ege22-v163
variant 164 math100-ege22-v164
variant 165 math100-ege22-v165
variant 166 math100-ege22-v166
variant 167 math100-ege22-v167
variant 168 math100-ege22-v168
variant 169 math100-ege22-v169
variant 170 math100-ege22-v170
variant 171 math100-ege22-v171
variant 172 math100-ege22-v172
variant 173 math100-ege22-v173
variant 174 math100-ege22-v174
alexlarin.net 
Вариант 358
скачать
Вариант 359 скачать
Вариант 360 скачать
Вариант 361 скачать
Вариант 362 проверить ответы
Вариант 363 проверить ответы
Вариант 364 проверить ответы
Вариант 365 проверить ответы
Вариант 366 проверить ответы
Вариант 367 проверить ответы
Вариант 368 проверить ответы
Вариант 369 проверить ответы
Вариант 370 проверить ответы
Вариант 371 проверить ответы
Вариант 372 проверить ответы
Вариант 373 проверить ответы
Вариант 374 проверить ответы
Вариант 375 проверить ответы
Вариант 376 проверить ответы
Вариант 377 проверить ответы
Вариант 378 проверить ответы
Вариант 379 проверить ответы
Вариант 380 проверить ответы
Вариант 381 проверить ответы
Вариант 382 проверить ответы
Вариант 383 проверить ответы
Вариант 384 проверить ответы
Вариант 385 проверить ответы
Вариант 386 проверить ответы
Вариант 387 проверить ответы
Вариант 388 проверить ответы
vk.com/ekaterina_chekmareva (задания 1-12)
Вариант 1 ответы
Вариант 2
Вариант 3
Вариант 4
Вариант 5
Вариант 6
Вариант 7 ответы
Вариант 8
Вариант 9
Вариант 10
vk.com/matematicalate
Вариант 1 matematikaLite-prof-ege22-var1
Вариант 2 matematikaLite-prof-ege22-var2
Вариант 3 matematikaLite-prof-ege22-var3
Вариант 4 matematikaLite-prof-ege22-var4
Вариант 5 matematikaLite-prof-ege22-var5
Вариант 6 matematikaLite-prof-ege22-var6
Вариант 7 matematikaLite-prof-ege22-var7
Вариант 8 matematikaLite-prof-ege22-var8
vk.com/pro_matem
variant 1 pro_matem-prof-ege22-var1
variant 2 pro_matem-prof-ege22-var2
variant 3 pro_matem-prof-ege22-var3
variant 4 разбор
variant 5 разбор
vk.com/murmurmash
variant 1 otvet
variant 2 otvet
→  Купить сборники тренировочных вариантов ЕГЭ 2022 по математике

Структура варианта КИМ ЕГЭ

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и количеству заданий:

– часть 1 содержит 11 заданий (задания 1–11) с кратким ответом в виде целого числа или конечной десятичной дроби;

– часть 2 содержит 7 заданий (задания 12–18) с развёрнутым ответом (полная запись решения с обоснованием выполненных действий).

Задания части 1 направлены на проверку освоения базовых умений и практических навыков применения математических знаний в повседневных ситуациях.

Посредством заданий части 2 осуществляется проверка освоения математики на профильном уровне, необходимом для применения математики в профессиональной деятельности и на творческом уровне.

Связанные страницы:

Средний балл ЕГЭ 2021 по математике

Решение задач с параметром при подготовке к ЕГЭ

Изменения в КИМ ЕГЭ 2022 года по математике

Купить сборники типовых вариантов ЕГЭ по математике

Как решать экономические задачи ЕГЭ по математике профильного уровня?

3479 В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD. Диагонали трапеции пересекаются в точке O. Точки M и N — середины боковых сторон AB и CD соответственно. Плоскость α проходит через точки M и N параллельно прямой SO.
а) Докажите, что сечение пирамиды SABCD плоскостью α является трапецией.
б) Найдите площадь сечения пирамиды SABCD плоскостью α, если AD=9, BC=7, SO=6, а прямая SO перпендикулярна прямой AD
Решение
В основании пирамиды SABCD лежит трапеция ABCD, с большим основанием AD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 13 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург, Центр # Задачи-Аналоги   3357    3361   ...X
3477 В параллелограмме ABCD угол ВАС вдвое больше угла CAD. Биссектриса угла BAC пересекает отрезок BC в точке L. На продолжении стороны CD за точку D выбрана такая точка E, что AE=CE.
а) Докажите, что AL:BC=AB:BC.
б) Найдите EL, если AC=21, tg /_BCA=0,4
Решение
В параллелограмме ABCD угол ВАС вдвое раза больше угла CAD ! 36 вариантов ФИПИ Ященко 2023 Вариант 1 Задание 16 # ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Санкт-Петербург, Центр # Задача-Аналог   3356   ...X
3385 Точка O - точка пересечения диагоналей грани CDD1C1 куба ABCDA1B1C1D1. Плоскость DA1C1 пересекает диагональ BD1 в точке F.
а) Докажите, что BF:FD1=A1F:FO.
б) Точки M и N - середины ребер AB и AA1, соответственно. Найдите угол между прямой MN и плоскостью DA1C1
Решение
Точка O - точка пересечения диагоналей грани CDD1C1 куба ABCDA1B1C1D1 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Санкт-Петербург ...X
3384 В треугольнике ABC точки M и N  — середины сторон AB и BC соответственно. Известно, что около четырехугольника AMNC можно описать окружность.
а) Докажите, что треугольник ABC  — равнобедренный.
б) На стороне AС отмечена точка F, такая что /_AFB=135^@. Отрезок BF пересекает отрезок MN в точке E. Найдите радиус окружности, описанной около четырёхугольника AMNC, если /_ABC =120^@ и EF=6sqrt2
Решение
В треугольнике ABC точки M и N  — середины сторон AB и BC соответственно ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Санкт-Петербург, Центр ...X
3379 Найдите все значения параметра a, при каждом из которых уравнение x^2+a^2+2x-4a=abs(4x+2a). имеет более двух различных корней
Решение     График
Найдите все значения параметра a, при каждом из которых уравнение x2 +a2 +2x -4a = |4x+2a| имеет более двух различных корней ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 17 Санкт-Петербург ...X
3378 В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND1=1:2. Точка O - середина отрезка CB1.
а) Докажите, что прямая NO проходит через точку A.
б) Найдите объём параллелепипеда ABCDA1B1C1D1, если длина отрезка NO равна расстоянию между прямыми BD1 и CB1 и равна sqrt2
Решение
В прямоугольном параллелепипеде ABCDA1B1C1D1 на диагонали BD1 отмечена точка N так, что BN:ND1=1:2 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Москва, Центр, Санкт-Петербург ...X
3377 На стороне острого угла с вершиной A отмечена точка B. Из точки B на биссектрису и другую сторону угла опущены перпендикуляры BC и BD соответственно.
а) Докажите, что AC^2+CB^2=AD^2+DB^2.
б) Прямые AC и BD пересекаются в точке T. Найдите отношение AT:TC, если cos/_ ABC = 3/8
Решение
На стороне острого угла с вершиной A отмечена точка B ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 16 Центр, Москва, Санкт-Петербург ...X
3366 Имеются три коробки: в первой коробке — 64 камня, во второй — 77 камней, а в третьей — пусто. За один ход разрешается взять по камню из двух коробок и положить в оставшуюся. Сделали некоторое количество таких ходов.
а) Может ли в первой коробке оказаться 64 камня, во второй — 59, в третьей — 18?
б) Может ли в третьей коробке оказаться 141 камень?
в) В первой коробке оказался один камень. Найдите наибольшее возможное количество камней в третьей коробке.
Решение
Имеются три коробки: в первой коробке — 64 камня, во второй — 77 камней, а в третьей — пусто ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 18 Санкт-Петербург, Центр ...X
3365 В июле 2026 года планируется взять кредит в размере 880 тыс. руб.
Условия возврата таковы:
– каждый январь долг возрастает на 20% по сравнению с концом предыдущего года;
– с февраля по июнь необходимо выплатить часть долга;
– в июле 2027, 2028 и 2029 годов долг остается равным 880 тыс. руб.
– суммы выплат 2030 и 2031 годов равны;
– к июлю 2031 года долг будет выплачен полностью
Найдите разницу между первым и последним платежами
Решение
В июле 2026 года планируется взять кредит в размере 880 тыс. руб ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 15 Москва, Центр ...X
3364 SABCD — правильная четырёхугольная пирамида, точка M — середина ребра SA, точка N лежит на ребре SB, SN:NB=1:2.
а) Докажите, что плоскость CMN параллельна прямой SD.
б) Найдите площадь сечения пирамиды плоскостью CMN, если все рёбра пирамиды SABCD равны 6
Решение
Дана правильная пирамида SABCD, точка M — середина ребра SA, точка N лежит на ребре SB, SN:NB=1:2 ! ЕГЭ 2022 по математике 02.06.2022 основная волна Задание 13 Москва, Центр # Решение через теорему Менелая ...X

  • ЗАДАЧИ ЕГЭ С ОТВЕТАМИ

  • АНГЛИЙСКИЙ без ГРАНИЦ

2012-07-25

Александр

Задача 26579 из единого банка задач ЕГЭ по математике

Вероятно, Ваш браузер не поддерживается. Чтобы использовать тренажёр «Час ЕГЭ», попробуйте скачать
Firefox

Проект «Математика? Легко!!!« для вас!

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Конструктор упражнений для позвоночника!

Отзывов (14)

  1. Виктор

    2013-02-28 в 21:25

    Ещё раз здравствуйте Александр,это опять я,Виктор.В подобных заданиях с таким условием (только другие числовые данные) я нашел закономерность её решения.78 прибавляю 13 = 91. Теперь нахожу два числа,которые в сумме дадут 91,а разница между ними должна быть 13.И это числа 52 и 39. Ну и тут уже ясно какой ответ (у меня всегда было наибольшее число).Данный способ у меня всегда работает. Может ли это быть случайность,и способ когда-нибудь подведет?

    Ответить

    • Александр Крутицких

      2013-03-01 в 10:11

      Виктор, возможно такая закономерность и есть, но я не смог проанализировать и уловить её суть. В любом случае рекомендую при решении задач идти через понимание рассматриваемого процесса (движение, работа, прогрессии и прочее), тогда ошибки точно не будет. А сами «хитрые» приёмы (закономерности) применять только для экономии времени.

      Ответить

  2. Виктор

    2013-03-01 в 11:56

    Александр,у меня есть вопрос.Вот вы нашли x1 и x2.52 и 39.Это скорость первого и второго автомобилистов,или это два решения только первого автомобилиста,из которых только одно верно?

    Ответить

    • Александр Крутицких

      2013-03-01 в 14:51

      Это просто два решения задачи — и 39 и 52 это скорость первого автомобилиста. То есть при скорости первого 52 и 39 км/ч поставленное условие будет выполняться. Оба верны. Просто в условии ещё наложено дополнительное ограничение (скорость больше 48), поэтому мы выбираем 52.

      Ответить

  3. Виктор

    2013-03-01 в 20:24

    Все ясно.Думаю,проще решать сразу через дискриминант.91 мы получили путём 78 плюс 13,а 2028,это мы 78 умножили на 13 и ещё на два,так?

    Ответить

    • Александр Крутицких

      2013-03-01 в 21:35

      Да, 2028 получили именно так, а 91 нет. 91 мы получили в ходе преобразований в уравнении. Кстати, спасибо, что обратили внимание на эту задачу, увидел «неточность» вместо плюса поставил минус перед 78 на 13. Исправлю.

      Ответить

  4. Виктор

    2013-03-01 в 22:36

    Так,а откуда мы взяли 0.5 в самом начале решения?Это как бы первая и вторая половина пути 2 автомобилиста?

    Ответить

    • Александр Крутицких

      2013-03-01 в 22:39

      Да! Так и есть.

      Ответить

  5. Виктор

    2013-03-01 в 22:47

    Я думаю,что теперь я нашел быстрый способ решения именно такой задачи.

    0.5 * 78 = 39

    0.5 *13 = 6.5

    39 + 6.5 = 45.5

    45.5 * 2 = 91.

    Ну и дальше по дискриминанту.Такой способ будет работать в таких задачах?

    Ответить

    • Александр Крутицких

      2013-03-02 в 05:13

      Виктор, у этого способа я системы и закономерности не обнаружил. Советую, всё-таки, практиковаться в правильном составлении  уравнения и навыке его быстрого решения. Уйдёт  чуть-чуть больше времени, но решите гарантировано без ошибки. С уважением!!!

      Ответить

  6. Виктор

    2013-04-03 в 01:44

    Так,а почему мы 45.5 и 1014 умножаем именно на два?И всегда ли нужно это делать?

    Ответить

    • Александр Крутицких

      2013-04-04 в 10:58

      Нет необязательно, можно вычислять с любыми коэффициентами, но удобнее когда при х в квадрате стоит целое число.

      Ответить

  7. Виктор

    2013-04-24 в 14:00

    Александр,какую задачу из B13 вы считаете самой сложной?

    Ответить

    • Александр Крутицких

      2013-04-25 в 14:44

      Про трёх велосипедистов (есть отдельная статья на сайте), и про две кампании 99587 (запутаться легко).

      Ответить

Добавить комментарий

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

  • РубрикиРубрики
  • Задачи по номерам!

    №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №11 №12 №13 №14 №15 №16

  • МЕТКИ

    БЕЗ калькулятора Выбор варианта Как запомнить Личное Логарифмы Объём Окружность Круг Площадь Производная Треугольник Тригонометрия Трапеция Углы Уравнения Формулы Конкурсы Параллелограмм Поздравления Рекомендации Саморазвитие

  • ОСТЕОХОНДРОЗУ-НЕТ!

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ по математике 514623
  • Егэ по математике 511411
  • Егэ по математике 510733
  • Егэ по математике 510684
  • Егэ по математике 510249

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии