Егэ по математике профиль 2021 ященко 36 вариантов ответы

Ответы к пособию для подготовки ЕГЭ-2021 по математике. Профильный уровень. Типовые экзаменационные варианты. Под редакцией И. В. Ященко. 36 вариантов.

Вариант 1
Номер задания Ответ Номер задания Ответ
1 725.2 11 14
2 9 12 7
3 12 13
4 0.25 14
5 5.5 15
6 113 16 4.8
7 2 17 500 тыс. рублей
8 60 18
9 324 19 а) да; б) нет; в) 232/21
10 6250  

 

Вариант 2
Номер задания Ответ Номер задания Ответ
1 14.5 11 5
2 2 12 1.2
3 2 13
4 0.22 14
5 11 15
6 0.75 16 7.5
7 7 17 20
8 45 18 1 ⩽ a < 9
9 -7.5 19 а) да; б) нет; в) 10
10 1.3  

 

Вариант 3
Номер задания Ответ Номер задания Ответ
1 27 11 75
2 2 12 18
3 2.5 13
4 0.375 14
5 -2 15
6 62 16
7 6 17 35700 рублей
8 25 18
9 80 19 а) 7; б) 15; в) 14
10 60  

 

Вариант 4
Номер задания Ответ Номер задания Ответ
1 7 11 10
2 31 12 -2
3 2 13
4 0.32 14
5 0 15
6 78 16
7 6 17 53 820 рублей
8 20 18
9 28 19 а) 12; б) 15; в) 6
10 30  

 

Вариант 5
Номер задания Ответ Номер задания Ответ
1 8 11 35
2 4 12 14
3 9 13
4 0.46 14 36
5 0.8 15
6 37 16
7 -0.2 17 1 080 000 рублей
8 135 18
9 0.4 19 а) нет; б) 21; в) 82
10 6  

 

Вариант 6
Номер задания Ответ Номер задания Ответ
1 22.5 11 28
2 4 12 1
3 17 13
4 0.36 14 189
5 -4 15 (-0.5; 0.5); (0.5; 624.5)
6 53 16
7 -0.75 17 1 706 400 рублей
8 72 18
9 -0.3 19 а) нет; б) 36; в) 182
10 96  

 

Вариант 7
Номер задания Ответ Номер задания Ответ
1 758 11 77
2 12 12 -3
3 7.5 13
4 0.24 14 45°
5 4 15
6 29 16 8
7 6 17 54 925 рублей
8 315 18
9 2.72 19 а) да; б) нет; в) 16
10 7  

 

Вариант 8
Номер задания Ответ Номер задания Ответ
1 7 11 6
2 4 12 38
3 13.5 13
4 0.32 14
5 -1 15
6 6 16 18
7 -3 17 78 125 рублей
8 176 18
9 -3 19 а) да; б) нет; в) 12
10 28  

 

Вариант 9
Номер задания Ответ Номер задания Ответ
1 4 11 6.4
2 200 12 -21
3 4 13
4 0.44 14
5 3 15 [2; 5)
6 60 16 1
7 4 17 126 694,4 рублей
8 18 18
9 4 19 а) да; б) нет; в) 2805
10 6.5  

 

Вариант 10
Номер задания Ответ Номер задания Ответ
1 8 11 22
2 9 12 -8
3 2.5 13
4 0.18 14
5 4 15 (0; 5]
6 64 16 50
7 14 17 1-й объект — 7 человек;
2-й объект — 23 человека;
43 150 рублей
8 4 18 4 < a ⩽ 16
9 8 19 а) да; б) нет; в) 2220
10 9.6  

 

Вариант 11
Номер задания Ответ Номер задания Ответ
1 540 11 54
2 6 12 8
3 28 13
4 0.3 14
5 2 15 [-2; 2)
6 6.5 16
7 2 17 39
8 54 18 -2 < a < -1; -1 < a < 0;
0 < a < 3; 3 < a < 8; a > 8
9 -10 19 а) нет; б) нет; в) 676 г
10 25  

 

Вариант 12
Номер задания Ответ Номер задания Ответ
1 2640 11 12
2 26 12 -9
3 27 13
4 0.34 14
5 -2 15 (-2; 1); (1; 2)
6 30 16
7 3 17 1,6 млн рублей
8 27 18 a < 0; 0 < a < 3; 3 < a < 4;
4 < a < 5; 5 < a < 6
9 91 19 а) нет; б) нет; в) 240 г
10 17  

 

Вариант 13
Номер задания Ответ Номер задания Ответ
1 4320 11 48
2 0.3 12 26
3 13.5 13
4 0.4 14
5 -5 15
6 72.5 16 5 : 7
7 3 17 2.58
8 47 18
9 65 19 а) нет; б) нет; в) 3
10 8  

 

Вариант 14
Номер задания Ответ Номер задания Ответ
1 18000 11 64
2 2420 12 -1
3 6 13
4 0.556 14 48.5
5 6 15
6 68 16 10 : 11
7 6 17 4.05
8 76 18
9 16 19 а) да; б) нет; в) 5
10 633  

 

Вариант 15
Номер задания Ответ Номер задания Ответ
1 84 11 20
2 485 12 9
3 26 13
4 0.0595 14 4√3
5 -2 15
6 21 16 1:3:1
7 0.5 17 20
8 200 18 [-3;22]
9 7.5 19 а) да; б) 180; в) 546
10 0.31  

 

Вариант 16
Номер задания Ответ Номер задания Ответ
1 13 11 756
2 960 12 30
3 31.5 13
4 0.973 14 6√3
5 -5 15
6 35 16 4:5:4
7 5.5 17 3
8 88 18
9 2.5 19 а) да; б) 270; в) 17
10 1.728  

 

Вариант 17
Номер задания Ответ Номер задания Ответ
1 6 11 5
2 1.2 12 -81
3 53 13
4 0.2 14
5 1.5 15
6 13 16 44
7 6 17 7 и 12 млн руб.
8 10.5 18
9 1 19 а) да; б) да; в) 20
10 0.32  

 

Вариант 18
Номер задания Ответ Номер задания Ответ
1 196 11 3
2 2.5 12 1.5
3 240 13
4 0.875 14 5√5
5 0.75 15
6 165 16 13.5
7 3 17 7 и 3 млн руб.
8 216 18
9 -1 19 а) да; б) да; в) 10
10 60  

 

Вариант 19
Номер задания Ответ Номер задания Ответ
1 26 11 7
2 -11 12 -8
3 20 13
4 0.09 14 1
5 -1 15 [-1; ∞)
6 2 16 12
7 11 17 5.35
8 96 18
9 9 19 а) нет; б) да; в) 9 x 16 и 12 x 12;
3 x 12 и 6 x 6; 1 x 16 и 4 x 4
10 0.006  

 

Вариант 20
Номер задания Ответ Номер задания Ответ
1 34500 11 14
2 9 12 -18
3 6 13
4 2.5 14 √2
5 -2 15 [-3; 1)
6 10 16 9
7 7 17 2 и 5 млн руб.
8 111 18
9 10 19 а) нет; б) да; в) 4 x 9 и 6 x 6;
2 x 8 и 4 x 4; 1 x 9 и 3 x 3;
10 120  

 

Вариант 21
Номер задания Ответ Номер задания Ответ
1 6670 11 60
2 16 12 31
3 5 13
4 0.26 14
5 -8.25 15
6 86 16
7 -2 17 5000000 рублей
8 24 18
9 81 19 а) да; б) нет; в) 7
10 62  

 

Вариант 22
Номер задания Ответ Номер задания Ответ
1 11 11 78
2 15 12 13
3 8 13
4 0.48 14
5 -1.8 15
6 103 16 8√3
7 7 17 5000000 рублей
8 39 18
9 -20 19 а) да; б) нет; в) 6
10 58  

 

Вариант 23
Номер задания Ответ Номер задания Ответ
1 26950 11 14
2 1678 12 6
3 11 13
4 0.25 14
5 17 15 (√2; +∞)
6 73 16 30
7 7 17 3
8 72 18 (-3; -1)
9 27 19 а) нет; б) да; в) 1347
10 24  

 

Вариант 24
Номер задания Ответ Номер задания Ответ
1 24.2 11 65
2 4 12 40
3 16 13
4 0.15 14
5 4 15
6 28 16 16
7 4 17 1200000 рублей
8 13 18
9 16 19 а) нет; б) да; в) 989
10 44  

 

Вариант 25
Номер задания Ответ Номер задания Ответ
1 19 11 13
2 4 12 -5
3 4 13
4 0.76 14
5 3 15
6 15 16 67.5
7 6 17 411 000 рублей
8 4.8 18 -2 < a < -1; 1 < a < 2
9 10 19 а) да; б) нет; в) 26
10 3  

 

Вариант 26
Номер задания Ответ Номер задания Ответ
1 188 11 13
2 9 12 -3
3 3 13
4 0.28 14
5 87 15
6 17 16 42+18√5
7 13 17 9282000 рублей
8 61 18
9 63 19 а) нет; б) нет; в) 16
10 0.87  

 

Вариант 27
Номер задания Ответ Номер задания Ответ
1 145 11 11
2 650 12 -36
3 4 13
4 0.2 14 1.5√6
5 5 15 (0;√2]
6 21 16 5
7 4 17 1300000рублей
8 72 18
9 12 19 а) нет; б) нет; в) 11.75
10 17  

 

Вариант 28
Номер задания Ответ Номер задания Ответ
1 180 11 15
2 44.4 12 5
3 4 13
4 0.25 14 8√2π
5 58 15 [0; 2]
6 56 16 7
7 1.6 17 2
8 32 18 (-∞; -3)
9 64 19
10 20  

 

Вариант 29
Номер задания Ответ Номер задания Ответ
1 37.5 11 75
2 68.2 12 7
3 2.5 13
4 0.3125 14
5 5.3 15
6 7 16 30
7 1 17 6
8 13 18
9 3 19
10 1200  

 

Вариант 30
Номер задания Ответ Номер задания Ответ
1 61 11 27
2 420 12 -1
3 5 13
4 0.096 14 5
5 3 15
6 10 16 7
7 6 17 125000 рублей
8 18 18 b=-1, b ⩾ 0
9 3 19 а) нет; б) да; в) 6(310-210)
10 4974  

 

Вариант 31
Номер задания Ответ Номер задания Ответ
1 611 11 18
2 1500 12 -5
3 3.5 13
4 0.995 14 17:127
5 2 15 (0; 1); 9; (27; +∞) 
6 38 16 71º
7 5 17 20
8 84 18
9 -7 19 а) да; б) нет; в) 6
10 42  

 

Вариант 32
Номер задания Ответ Номер задания Ответ
1 186 11 20
2 56 12 -6
3 20 13
4 0.996 14 7:11
5 2 15 (0;1) 2; (8; +∞)
6 2 16 78º
7 6 17 10
8 48 18
9 -0.56 19 а) да; б) нет; в) 5
10 100  

 

Вариант 33
Номер задания Ответ Номер задания Ответ
1 31140 11 250
2 3 12 4
3 26 13
4 0.01 14
5 5 15
6 4.5 16 6√3
7 4.5 17 12.5
8 24 18 [-1.5; -0.375); 0
9 -63 19 а) 42; б) положительных; в) 24
10 2642  

 

Вариант 34
Номер задания Ответ Номер задания Ответ
1 28 11 48
2 -21 12 32
3 5 13
4 0.09 14
5 3 15
6 40 16
7 6 17 1029000
8 9 18
9 -22 19 а) 60;
б) положительных;
в) 36
10 2408  

 

Вариант 35
Номер задания Ответ Номер задания Ответ
1 140 11 3
2 5 12 5
3 4 13
4 0.9 14 √166
5 11 15
6 66 16 4
7 -1 17 1171280
8 500 18
9 -3 19 а) да; б) нет; в) 1632
10 12  

 

Вариант 36
Номер задания Ответ Номер задания Ответ
1 200 11 1
2 6 12 11
3 6 13
4 0.2 14 3√59
5 13 15
6 130 16 2
7 1 17 656250
8 1372 18
9 -3 19 а) да; б) нет; в) 1711
10 18  

Задание 1

Показания счётчика электроэнергии 1 января составляли 53848 кВт*ч, а 1 февраля — 54107 кВт*ч. Сколько нужно заплатить за электроэнергию за январь, если 1 кВт*ч электроэнергии стоит 2 руб. 80 коп.? Ответ дайте в рублях.

Ответ: 725,2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Разница в кВт*ч: $$54107-53848=259$$.

Стоимость: $$259cdot 2,8=725,2$$ рубля.

Задание 2

На диаграмме показан уровень инфляции в России в 2018 и 2019 годах. По горизонтали указаны месяцы, по вертикали — уровень инфляции (в процентах) за каждый месяц соответствующего года. Определите количество месяцев, когда инфляция в 2019 году была ниже, чем инфляция в соответствующем месяце 2018 года.

Ответ: 9

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Это месяцы с апреля по декабрь: 9 месяцев.

Задание 3

На клетчатой бумаге с размером клетки 1×1 изображён ромб. Найдите его площадь.

Ответ: 12

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Найдем диагонали по теореме Пифагора $$d_1=sqrt{2^2+2^2}=2sqrt{2}; d_2=sqrt{6^2+6^2}=6sqrt{2}$$. $$S=frac{1}{2} d_1cdot d_2=frac{1}{2} cdot 2sqrt{2} cdot 6sqrt{2}=12$$

Задание 4

В гонке с раздельным стартом участвуют 25 лыжников, среди которых 7 спортсменов из Норвегии. Порядок старта определяется с помощью жребия случайным образом. Один из норвежских лыжников получил стартовый номер «5». Найдите вероятность, что он будет стартовать за своим соотечественником.

Ответ: 0,25

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Вероятность, что 4-ый будет из Норвегии: $$Pleft(Aright)=frac{6}{24}$$ (т.к. после того, как один получит номер «5» лыжников из Норвегии осталось 6, а всего лыжников 24). Т.е. 0,25.

Задание 5

Найдите корень уравнения $$frac{1}{2x-3}=frac{1}{8}$$.

Ответ: 5,5

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$$frac{1}{2x+3}=frac{1}{8}leftrightarrow 2x-3=8leftrightarrow 2x=11leftrightarrow x=5,5$$

Задание 6

В треугольнике АВС угол С равен $$46{}^circ $$, AD и BE — биссектрисы, пересекающиеся в точке О. Найдите угол АОВ. Ответ дайте в градусах.

Ответ: 113

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$$angle A+angle B=180{}^circ -angle C=134{}^circ to frac{angle A}{2}+frac{angle B}{2}=frac{134}{2}=67{}^circ to$$ $$to angle AOB=180-67=113{}^circ $$

Задание 7

На рисунке изображён график $$у = f'(x)$$ — производной функции $$f(x)$$, определённой на интервале (-9; 6). Найдите количество точек минимума функции $$f(x)$$, принадлежащих отрезку $$[-8; 5].$$

Ответ: 2

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Точка минимума там, где $$f’left(xright)=0$$ при возрастании $$f’left(xright)$$, т.е. $$approx -1,8; approx 1,5; approx 5,6$$. Но на $$xin [-8;5]$$ их 2 точки.

Задание 8

В кубе $$ABCDA_1B_1C_1D_1$$ найдите угол между прямыми $$DC_1$$ и $$BD$$. Ответ дайте в градусах.

Ответ: 60

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Рассмотрим $$triangle BC_1D:BC_1=DC_1=BC_1=BD$$ (диагонали равных квадратов)$$to triangle BC_1D$$ — равносторонний $$to angle BDC_1=60{}^circ $$.

Задание 9

Найдите значение выражения $$4^{1-2{{log }_{0,5} 3 }}$$

Ответ: 324

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$$4^{1-2{{log }_{0,5} 3 }}=frac{4^1}{4^{2{{log }_{0,5} 3 }}}=frac{4^1}{{(2^2)}^{{{log }_{2^{-1}} 3 }}}=frac{4}{2^{-2{{log }_2 9 }}}=frac{4}{2^{{{log }_2 frac{1}{81} }}}=frac{4}{frac{1}{81}}=324$$

Задание 10

Автомобиль разгоняется на прямолинейном участке шоссе с постоянным ускорением $$a$$ в км/ч$${}^{2}$$. Скорость $$v$$ (в км/ч) вычисляется по формуле $$v=sqrt{2la}$$, где $$l$$ — пройденный автомобилем путь (в км). Найдите ускорение, с которым должен двигаться автомобиль, чтобы, проехав 0,8 км, приобрести скорость 100 км/ч. Ответ дайте в км/ч$${}^{2}$$.

Ответ: 6250

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Подставим известные в формулу: $$100=sqrt{2cdot 0,8cdot a}leftrightarrow 10000=1,6aleftrightarrow a=6250$$.

Задание 11

Катер в 8:40 вышел из пунтка А в пункт В, расположенный в 48 км от А. Пробыв 40 минут в пункте В, катер отправился назад и вернулся в пункт А в 16:20 того же дня. Найдите собственную скорость катера (в км/ч), если известно, что скорость течения реки 2 км/ч.

Ответ: 14

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Прошло времени: 7 часов 40 минут. При этом 40 минут стоял, т.е. в движении 5 часов. Пусть $$x$$ км/ч — собственная скорость катера.

Тогда: $$frac{48}{x+2}+frac{48}{x-2}=7leftrightarrow 48x-96+48x+96=7x^2-28leftrightarrow 7x^2-96x-28=0to $$ $$to frac{D}{4}=2304+196=2500to left[ begin{array}{c}
x_1=frac{48+50}{7} \
x_2<0 end{array}
right.leftrightarrow x=14$$

Задание 12

Найдите наименьшее значение функции $$y=4{sin x }-6x+7$$ на отрезке $$left[-frac{3pi }{2};0right]$$

Ответ: 7

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Найдем производную: $$y’=4{cos x }-6$$. Т.к. $$left|{cos x }right|le 1$$, то $$y'<0$$ при любом $$x$$, тогда функция убывает на всем $$Dleft(xright)to y_{min}=y(0)$$. $$yleft(0right)=4{sin 0 }-6cdot 0+7=7$$

Задание 13

а) Решите уравнение $$2{{sin }^{{rm 2}} (frac{pi }{2}-x) }+{sin 2x }=0$$

б) Укажите корни этого уравнения, принадлежащие отрезку $$[3pi ;frac{9pi }{2}]$$

Ответ: а)$$frac{pi }{2}+pi n,nin Z$$; $$-frac{pi }{4}+pi n,nin Z$$ б) $$1)3pi +frac{pi }{2}=frac{7pi }{2};2)4pi +frac{pi }{2}=frac{9pi }{2} ;3)4pi -frac{pi }{4}=frac{15pi }{4} $$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

а) $$2{{sin }^{{rm 2}} (frac{pi }{2}-x) }+{sin 2x }=0leftrightarrow 2{{cos }^{{rm 2}} x }+2{sin x }{cos x }=0leftrightarrow$$ $$leftrightarrow 2{cos x }left({cos x }+{sin x }right)=0leftrightarrow left[ begin{array}{c} {cos x=0 } \ {cos x }+{sin x }=0 end{array} right.leftrightarrow left[ begin{array}{c} {cos x=0 } \ 1+{tan x }=0 end{array} right.leftrightarrow$$ $$leftrightarrow left[ begin{array}{c} x=frac{pi }{2}+pi n,nin Z \ x=-frac{pi }{4}+pi n,nin Z end{array} right.$$

б) С помощью единичной окружности отберем корни на $$left[3pi ;frac{9pi }{2}right]:1)3pi +frac{pi }{2}=frac{7pi }{2};2)4pi +frac{pi }{2}=frac{9pi }{2} ;3)4pi -frac{pi }{4}=frac{15pi }{4} $$

Задание 14

В правильной шестиугольной пирамиде SABCDEF сторона основания АВ равна 2, а боковое ребро SA равно 8. Точка М — середина ребра АВ. Плоскость $$alpha $$ перпендикулярна плоскости АВС и содержит точки М и D. Прямая SC пересекает плоскость $$alpha $$ в точке К.

а) Докажите, что KM = KD.

б) Найдите объём пирамиды CDKM.

Ответ: $$frac{3sqrt{5}}{4}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

А) 1) Пусть $$FCcap DM=L$$. Т.к. $$alpha bot ABC$$, то ч/з L пойдет $$LKbot ABC$$. Пусть $$CBcap DM=H$$, $$KHcap SB=Rto left(DKRMright)$$ — искомая плоскость.

2) FC равноудалена от ED и AB $$to $$ т.к. $$EDparallel AB$$, то $$angle XDL=angle LZB$$ (накрест лежащие) $$to triangle XDL=triangle LMZto DL=LMto KL$$ — высота и медиана $$to $$ $$triangle DKM$$ — равнобедренный $$to KM=KD$$.

Б) 1) $$V_{CDKM}=frac{1}{3}S_{CDKM}cdot KL$$. $$S_{ABCDEF}=6S_{AOB}=6cdot frac{1}{2}cdot 2cdot 2cdot frac{sqrt{3}}{2}=6sqrt{3}to S_{MNDCB}=3sqrt{3}.$$ $$S_{MND}=frac{1}{2}MNcdot ND=frac{1}{2}cdot 2cdot 2cdot frac{sqrt{3}}{2}=6sqrt{3}.$$ $$S_{MBC}=frac{1}{2}MBcdot BC{sin angle B }=frac{1}{2}cdot 1cdot 2cdot frac{sqrt{3}}{2}=frac{sqrt{3}}{2}to S_{CDM}=3sqrt{3}-sqrt{3}-frac{sqrt{3}}{2}=$$ $$=frac{3sqrt{3}}{2}.$$

2) $$NX=OLto LC=2-frac{1}{2}=frac{3}{2}to frac{KL}{SO}=frac{LC}{OC}=frac{frac{3}{2}}{2}=frac{3}{4}$$ (т.к. $$triangle SOCsim triangle KLC$$ по острому углу) — $$SO=sqrt{SB^2-OB^2}=sqrt{8^2-2^2}=sqrt{60}=2sqrt{15}to KL=frac{3sqrt{15}}{2}to$$ $$to V_{CDKM}=frac{1}{3}cdot frac{3sqrt{3}}{2}cdot frac{3sqrt{15}}{2}=frac{3sqrt{5}}{4}$$.

Задание 15

Решите неравенство $$x^2{{log }_{64} (3-2x) }ge {{log }_2 left(4x^2-12x+9right) }$$

Ответ: $$xin left(-infty ;-sqrt{12}right];[1;1,5)$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
$$x^2{{log }_{64} (3-2x) }ge {{log }_2 left(4x^2-12x+9right) }leftrightarrow frac{x^2}{6}{{log }_2 left(3-2xright) }-{{log }_{64} {left(2x-3right)}^2 }ge 0leftrightarrow $$ $$leftrightarrow $$ т.к. $$3-2x>0$$, то: $$frac{x^2}{6}{{log }_2 left(3-2xright) }-2{{log }_2 left(3-2xright) }ge 0leftrightarrow (x^2-12)({{log }_2 (3-2x) })ge 0leftrightarrow $$ $$leftrightarrow left{ begin{array}{c}
3-2x>0 \
(x^2-12)(3-2x-1)ge 0 end{array}
right.leftrightarrow left{ begin{array}{c}
x<1,5 \
(x-sqrt{12})(x+sqrt{12})(x-1)le 0 end{array}
right.$$.
$$xin left(-infty ;-sqrt{12}right];[1;1,5)$$

Задание 16

Две окружности касаются внутренним образом в точке С. Вершины А и В равнобедренного прямоугольного треугольника АВС с прямым углом С лежат на меньшей и большей окружностях соответственно. Прямая АС вторично пересекает большую окружность в точке Е, а прямая ВС вторично пересекает меньшую окружность в точке D.

а) Докажите, что прямые AD и BE параллельны.

б) Найдите АС, если радиусы окружностей равны 3 и 4.

Ответ: 4,8

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

а) По т.о. касательной и хорде $$angle LCD=angle CAD$$ (для меньшей) и $$angle LCD=angle CED$$ (для большей) $$to angle CAD=angle CED$$, а они накрест лежащие $$to ADparallel BE$$.

б) $$angle CDA$$ и $$angle EBE$$ — прямоугольные, $$angle CAD=angle CEDto triangle CDAsim triangle CBEto frac{CD}{CB}=frac{CA}{CE}=frac{AD}{BE}$$. При этом AD и BE — диаметры ($$angle C$$ — вписан и прямой) $$to AD=6;BE=8to frac{CD}{CB}=frac{3}{4}$$. Пусть $$CA=CB=xto CD=frac{3}{4}x$$. Из $$triangle ADC:AD^2=CD^2+CA^2to 36=x^2+frac{9x^2}{16}to x^2=frac{36cdot 16}{25}to x=4,8$$.

Задание 17

В июле 2022 года планируется взять кредит на пять лет в размере 1050 тыс. рублей. Условия его возврата таковы:

— каждый январь долг возрастает на 10% по сравнению с концом предыдущего года;

— с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;

— в июле 2023, 2024 и 2025 годов долг остаётся равным 1050 тыс. рублей;

— выплаты в 2026 и 2027 годах равны;

— к июлю 2027 года долг будет выплачен полностью.

На сколько рублей последняя выплата будет больше первой?

Ответ: 500 т.р.

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть
Раз первые 3 года долг не менялся, то платили только проценты, т.е. $$1050cdot 0,1=105$$ т.р. Пусть крайние 2 выплаты по $$x$$ т.р. Тогда: $$left(1050cdot 1,1-xright)cdot 1,1-x=0leftrightarrow 1270,5-2,1x=0to x=605$$ т.р. Тогда разница: $$605-105=500$$ т.р.

Задание 18

Найдите все значения $$a$$, при каждом из которых система уравнений $$left{ begin{array}{c} sqrt{16-y^2}=sqrt{16-a^2x^2} \ x^2+y^2=8x+4y end{array} right.$$ имеет ровно два различных решения.

Ответ: $$ain left(-infty ;-2right);(-2;+infty )$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

$$left{ begin{array}{c} sqrt{16-y^2}=sqrt{16-a^2x^2} \ x^2+y^2=8x+4y end{array} right.leftrightarrow left{ begin{array}{c} 16-y^2ge 0 \ 16-y^2=16-{left(axright)}^2 \ x^2+y^2-8x-4y=0 end{array} right.leftrightarrow$$ $$leftrightarrow left{ begin{array}{c} yin [-4;4] \ y=ax \ y=-ax \ x^2+y^2-8x-4y=0 end{array} right.$$

При $$y=ax:x^2+{a^2x}^2-8x-4ax=0leftrightarrow xleft(x+a^2x-8-4aright)=0leftrightarrow left[ begin{array}{c} x=0 \ x=frac{4a+8}{a^2+1} end{array} right.leftrightarrow $$ $$leftrightarrow left[ begin{array}{c} y=0 \ y=frac{4a^2+8a}{a^2+1} end{array} right.$$.

При $$y=-ax: x^2+{a^2x}^2-8x+4ax=0leftrightarrow left[ begin{array}{c} x=0 \ x=frac{-4a+8}{a^2+1} end{array} right.leftrightarrow left[ begin{array}{c} y=0 \ y=frac{4a^2-8a}{a^2+1} end{array} right.$$.

Получим: $$left(0:0right):left(frac{4a+8}{a^2+1};frac{4a^2+8a}{a^2+1}right);(frac{8-4a}{a^2+1};frac{4a^2-8a}{a^2+1})$$.

При этом $$left(0:0right)$$ всегда, т.к. $$yin [-4;4]$$ выполняется.

Вторая пара существует при: $$-4le frac{4a^2+8a}{a^2+1}le 4to left{ begin{array}{c} 4a^2+8age -4a^2-4 \ 4a^2+8ale 4a^2+4 end{array} right.leftrightarrow left{ begin{array}{c} 8a^2+8a+4ge 0 \ ale frac{1}{2} end{array} right.leftrightarrow ale frac{1}{2}$$.

Третья пара существует при: $$-4le frac{4a^2-8a}{a^2+1}le 4to left{ begin{array}{c} 4a^2-8age -4a^2-4 \ 4a^2-8age 4a^2+4 end{array} right.$$$$leftrightarrow left{ begin{array}{c} 8a^2-8a+4ge 0 \ age -frac{1}{2} end{array} right.leftrightarrow age -frac{1}{2}$$.

При этом первая и вторая совпадают при $$frac{4a+8}{a^2+1}=0to a=-2.$$

Первая и третья: $$frac{8-4a}{a^2+1}=0to a=2$$.

Вторая и третья: $$frac{4a+8}{a^2+1}=frac{8-4a}{a^2+1}to a=0$$. т.е. должно быть только 2: $$ain left(-infty ;-2right);(-2;+infty )$$.

Задание 19

На доске было написано несколько различных натуральных чисел. Эти числа разбили на три группы, в каждой из которых оказалось хотя бы одно число. К каждому числу из первой группы приписали справа цифру 3, к каждому числу из второй группы — цифру 7, а числа из третьей группы оставили без изменений.

а) Могла ли сумма всех этих чисел увеличиться в 8 раз?

б) Могла ли сумма всех этих чисел увеличиться в 17 раз?

в) В какое наибольшее число раз могла увеличиться сумма всех этих чисел?

Ответ: а)да б)нет в)$$frac{232}{21}$$

Скрыть

Больше разборов вы найдете на моем ютуб-канале! Не забудьте подписаться!


Скрыть

А) Пусть было три числа $$A,B,Cin N,Ane Bne Cle 9$$. Получим $$Ato 10A+3;Bto 10B+7$$. Следовательно, $$frac{10A+3+10B+7+C}{A+B+C}=8to 2A+2B+10-7C=0$$. Пусть $$A=2,B=8,C=4to $$ Да, могла.

Б) Пусть в 1-ой группе $$x$$ чисел, их сумма $$A$$, во 2-ой $$y$$ чисел, сумма $$B$$, в 3-ей $$Z$$ чисел, сумма $$C$$. Тогда $$frac{10A+3x+10B+7y+C}{A+B+C}=17to 3x+7y=7A+7B+16C.$$ При этом $$Age x,Bge y$$, тогда $$3x+7y<7A+7Bto $$ равенство невозможно.

В) Пусть в 1,2 и 3 группах x, y и 7 чисел соответственно, их сумма $$A,B,C$$. Тогда $$frac{10A+3x+10B+7y+C}{A+B+C}=Qto frac{10left(A+B+Cright)+3x+7y-9C}{A+B+C}=Qto$$ $$to Q=10+frac{3x+7y-9c}{A+B+C}$$ т.к. при переносе чисел из первой или третьей группы во вторую $$A+B+C$$ не меняется, но $$3x+7y-9C$$ увеличивается, то и Q увеличится. Следовательно, $$Qto max$$, при $$xto min$$. А $$x_{min}=1$$. $$Cto min$$, т.е. $$Zto min, Z=1(C=1)$$. При этом общее число чисел тогда $$y+2$$. Получим: $$Q=10+frac{3x+7y-9c}{A+B+C}$$. Т.к. числа разные натуральные, то $$A+B+Cge 2+1+frac{2cdot 3+1left(y-1right)}{2}cdot y$$ (т.к. минимальная сумма будет у подряд идущих натуральных чисел с единицы). Т.е. $$A+B+Cge 3+frac{left(5+yright)y}{2}$$ или $$A+B+Cge frac{y^2+5y+6}{2}=frac{left(y+2right)left(y+3right)}{2}$$. Тогда: $$Q=10+frac{left(7y-6right)cdot 2}{(y+2)(y+3)}$$. Найдем максимальное значение $$frac{14y-12}{(y+2)(y+3)}=f(y)$$ при $$yin N$$. $$f’left(yright)=frac{14left(y^2+5y+6right)-left(14y-12right)left(2y+5right)}{{left((y+2)(y+3)right)}^2}=0to $$ $$to 14y^2+70y+84-28y^2-70y+24y+60=0$$. $$-14y^2+24y+144=0to -7y^2+12y+72=0to frac{D}{4}=540in ({23}^2;{24}^2)$$. $$left[ begin{array}{c} y_1=frac{-6+sqrt{540}}{-7} \ y_2=frac{-6-sqrt{540}}{-7}-max end{array} right..$$

При этом $$y_2=frac{6+sqrt{540}}{7}approx frac{6+23}{7}approx frac{29}{7}to y=4$$ или $$y=5$$. При $$y=4:fleft(4right)=frac{14cdot 4-12}{6cdot 7}=frac{44}{6cdot 7}=frac{22}{21}$$.

При $$y=5:fleft(5right)=frac{14cdot 5-12}{7cdot 8}=frac{58}{7cdot 8}=frac{29}{28}$$. $$fleft(4right)>fleft(5right)to Q_{max}=10+frac{22}{21}=frac{232}{21}.$$

Ответы к 36 вариантам профильного ЕГЭ по математике. Сборник ЕГЭ-2023 «Типовые экзаменационные варианты».

Вариант 1

1) 5,5
2) 2048
3) 0,06
4) 0,89
5) -0,2
6) 0,5
7) 5
8) 5,832
9) 2
10) -4
11) -2910

Ответы к сборнику Ященко ЕГЭ-2023 36 вариантов

Вариант 2

1) 7,5
2) 4
3) 0,12
4) 0,91
5) -0,9
6) 0,2
7) 1
8) 0,216
9) 16
10) -8
11) 12,25 

Вариант 3

1) 2,5
2) 30
3) 0,37
4) 0,375
5) -2,5
6) 4
7) 2
8) 51,2
9) 14
10) 32
11) 204 

Вариант 4

1) 1,5
2) 12
3) 0,24
4) 0,125.
5) 0,375
6) 125
7) 8
8) 281,25
9) 18
10) -56
11) -10,9 

Вариант 5

1) 99,5
2) 12
3) 0,004 /или/ -0,004
4) 0,9409
5) -0,5
6) 2
7) -19
8) 60
9) 17
10) 16
11) -52 

Вариант 6

1) 55
2) 18
3) 0,006 /или/ -0,006
4) 0,8464
5) -5,5
6) 3
7) -4
8) 30
9) 24
10) -1
11) -6 

Вариант 7

1) 0,2
2) 10
3) 0,2
4) 0,56
5) -0,4
6) -1
7) 9
8) 0,6
9) 55
10) 6
11) 0,5 

Вариант 8

1) 0,4
2) 5
3) 0,125
4) 0,46
5) -7
6) -1
7) 7
8) 1,8
9) 11
10) 0,25
11) 17 

Вариант 9

1) 3
2) 15 625
3) 0,01
4) 0,28
5) -12
6) 144
7) -1
8) 756
9) 20
10) -3
11) 9 

Вариант 10

1) 0,6
2) 150
3) 0,28
4) 0,17
5) -2,6
6) 625
7) -18
8) 220,5
9) 9
10) 253
11) -23,25 

Вариант 11

1) -0,7
2) 72
3) 0,25
4) 0,043
5) -0,2
6) -5
7) -1
8) 50
9) 17,5
10) 78
11) 6,75 

Вариант 12

1) 0,75
2) 24
3) 0,55
4) 0,02
5) -1,5
6) -4
7) 4
8) 40
9) 13,5
10) -23
11) 6,25 

Вариант 13

1) 8
2) 48
3) 0,4
4) 0,6
5) -9
6) 0,5
7) 4
8) 33
9) 9
10) -0,5
11) 77 

Вариант 14

1) 14
2) 40,5
3) 0,28
4) 0,78
5) -2
6) 0,04
7) 39
8) 23
9) 24
10) 0,4
11) 37 

Вариант 15

1) 11,55
2) 432
3) 0,014
4) 0,06
5) -9
6) 0,25
7) 2
8) 0,32
9) 3
10) 2,5
11) 208 

Вариант 16

1) 12
2) 192
3) 0,29
4) 0,02
5) -8
6) 0,125
7) 4
8) 1,16
9) 1
10) -15
11) 5 

Вариант 17

1) 10
2) 80
3) 0,08
4) 0,2
5) -2,5
6) 216
7) -2
8) 175
9) 18
10) 16
11) -24 

Вариант 18

1) 35
2) 10
3) 0,2
4) 0,24
5) -0,2
6) 3,5
7) 28
8) 43,75
9) 21
10) 2,25
11) -15 

Вариант 19

1) 2,5
2) 7,28
3) 0,25
4) 0,22
5) -1,5
6) 1
7) 0,2
8) 115
9) 135
10) 2
11) -34 

Вариант 20

1) 6
2) 7,68
3) 0,75
4) 0,27
5) -4,5
6) 10
7) -0,25
8) 220
9) 52
10) 27
11) 0 

Вариант 21

1) 113
2) 60
3) 0,2
4) 0,973
5) 5,5
6) 324
7) 2
8) 6250
9) 14
10) 15
11) 7 

Вариант 22

1) 0,75
2) 45
3) 0,3
4) 0,9744
5) 11
6) -7,5
7) 7
8) 1,3
9) 5
10) 3,4
11) 1,2 

Вариант 23

1) 62
2) 25
3) 0,25
4) 0,3
5) -2
6) 80
7) 6
8) 60
9) 75
10) 28
11) 18 

Вариант 24

1) 78
2) 20
3) 0,2
4) 0,82
5) 0
6) 28
7) 6
8) 30
9) 10
10) -28
11) -2 

Вариант 25

1) 37
2) 135
3) 0,18
4) 3
5) 0,8
6) 0,4
7) -0,2
8) 6
9) 1 35
10) -0,4
11) 14 

Вариант 26

1) 53
2) 72
3) 0,38
4) 5
5) -4
6) -0,3
7) -0,75
8) 96
9) 28
10) -13
11) 1 

Вариант 27

1) 29
2) 315
3) 0,14
4) 0,03
5) 4
6) 2,72
7) 6
8) 7
9) 77
10) 76
11) -3 

Вариант 28

1) 6
2) 176
3) 0,375
4) 0,012
5) -1
6) -3
7) -3
8) 28
9) 6
10) -5
11) 38 

Вариант 29

1) 60
2) 18
3) 0,24
4) 0,2
5) 3
6) 4
7) 4
8) 6,5
9) 6,4
10) 67
11) -21 

Вариант 30

1) 64
2) 4
3) 0,28
4) 0,6
5) 4
6) 8
7) 14
8) 9,6
9) 22
10) 3
11) -8 

Вариант 31

1) 6,5
2) 54
3) 0,98
4) 0,2
5) 2
6) -10
7) 2
8) 25
9) 54
10) -7
11) 8 

Вариант 32

1) 30
2) 27
3) 0,024
4) 0,15
5) -2
6) 91
7) 3
8) 17
9) 12
10) 13
11) -9 

Вариант 33

1) 72,5
2) 47
3) 0,28
4) 0,097
5) -5
6) 65
7) 3
8) 8
9) 48
10) -2,5
11) 26  

Вариант 34

1) 68
2) 76
3) 0,16
4) 0,068
5) 6
6) 16
7) 6
8) 633
9) 64
10) -0,25
11) -1 

Вариант 35

1) 21
2) 200
3) 0,56
4) 0,9
5) -2
6) 7,5
7) 0,5
8) 0,31
9) 20
10) 0,75
11) 9 

Вариант 36

1) 35
2) 88
3) 0,12
4) 12
5) -5
6) 2,5
7) 5,5
8) 1,728
9) 756
10) -0,5
11) 30

ЕГЭ 2021 по Математике, Ященко И.В. Профильный уровень. 36 типовых экзаменационных вариантов (задания и ответы)Ященко И.В. (2021, 256с.) по Математике 11 класс.Пособие прошло научно-методическую оценку ФГБНУ «ФИПИ». Серия подготовлена разработчиками контрольных измерительных материалов (КИМ) единого государственного экзамена Учителя могут использовать типовые экзаменационные варианты для организации контроля результатов освоения школьниками образовательных программ среднего общего образования и интенсивной подготовки обучающихся к ЕГЭ.

Читать онлайн и скачать сборник в формате PDF: Скачать


* Еще больше пособий ЕГЭ и ОГЭ
* Учебные материалы

Поделиться:

31.10.2020

Сборник ответов для пособия ЕГЭ 2021, 36 типовых вариантов по математике профильного уровня, под редакцией Ященко И.В.

  • Тренировочные варианты ЕГЭ 2021 по математике
  • Реальные варианты ЕГЭ 2020 по математике
  • Работы СтатГрад 2020-2021

Выбирайте вариант и смотрите ответы по PDF файлу. Вы можете скачать их совершенно бесплатно.

Видеоразбор варианта №7 из сборника Ященко

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.

Видеоразбор варианта №5, Ященко

Добавить комментарий

Комментарии без регистрации. Несодержательные сообщения удаляются.

  • Математика ЕГЭ
  • Математика ОГЭ
  • Биология ОГЭ
  • Биология ЕГЭ
  • Физика ОГЭ
  • Физика ЕГЭ
  • Химия ЕГЭ
  • Химия ОГЭ
  • Русский язык ОГЭ
  • Русский язык ЕГЭ
  • Английский язык ОГЭ
  • Английский язык ЕГЭ
  • Литература ЕГЭ
  • Литература ОГЭ
  • История ЕГЭ
  • История ОГЭ
  • Информатика ЕГЭ
  • Информатика ОГЭ
  • География ЕГЭ
  • География ОГЭ

Вы здесь: ✔️ Главная сайта ГДЗ Математика ЕГЭ Ященко ЕГЭ-2021 профильный уровень 36 вариантов математика

👀 Просмотров: 2243

Инфо

Ященко ЕГЭ-2021 профильный уровень 36 вариантов математика

Автор: И.В. Ященко

Предмет (категория): 36 экзаменационных вариантов

Класс: 

Читать онлайн: Да

Скачать бесплатно: Да

Формат книги: jpg

Размер книги/ГДЗ: 47.1 Мб

Год публикации (выпуска): 2021

Читать онлайн или скачать 36 тренировочных вариантов для подготовки к Единому государственному экзамену по математике под редакцией Ященко 2021 года:

Самые популярные статьи:

  • ЕГЭ 2015. Ященко Математика. 36 вариантов.
  • Лысенко, Калабухова ЕГЭ-2019 профильный уровень 40 тренировочных вариантов математика
  • Ященко ЕГЭ-2019 36 типовых экзаменационных вариантов профильный уровень математика
  • Подготовка к ЕГЭ-2016. Математика. 40 тренировочных вариантов по демоверсии на 2016 год. Профильный уровень. Лысенко Ф.Ф., Кулабухов С.Ю.
  • Ященко ЕГЭ-2019 50 вариантов заданий профильный уровень математика

Новые материалы для вашего класса:

  • Семенов ЕГЭ-2022 готовимся к итоговой аттестации базовый уровень математика
  • Математика ЕГЭ-2021 диагностические работы профильный уровень
  • Семенов, Высоцкий ЕГЭ-2021 базовый уровень готовимся к итоговой аттестации математика
  • Ященко ЕГЭ-2021 профильный уровень 10 вариантов типовые варианты математика

< НазадВперёд >

Вам это пригодится

Барашкова английский язык на каникулах н…
Барашкова английский язык на каникулах неправильные глаголы 5-6 классы 2021

Узорова английский язык в схемах и табл…
Узорова  английский язык в схемах и таблицах 2-4 классы 2020

Державина английский язык для начальной …
Державина английский язык для начальной школы полный курс с рабочей тетрадью 2021

Барашкова английский язык на каникулах н…
Барашкова английский язык на каникулах неправильные глаголы 3-4 классы 2021

Карачаева 100 тестов по лексике и грамма…
Карачаева 100 тестов по лексике и грамматике английский язык 2020

Мордкович учебник алгебра углубленный ур…
Мордкович учебник алгебра углубленный уровень 2 часть 7 класс 2019

3631 В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75°. Точка P лежит вне прямоугольника, а угол APB равен 150°.
а) Докажите, что углы BAP и POB равны.
б) Прямая PO пересекает сторону CD в точке F. Найдите CF, если AP=6sqrt3 и BP=4
Решение
В прямоугольнике ABCD диагонали пересекаются в точке O, а угол BDC равен 75° ! 36 вариантов ФИПИ Ященко 2023 Вариант 25 Задание 16 # Задача-аналог   2559   ...X
3577 В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23. Длины боковых рёбер пирамиды SA = 2sqrt15, SB=sqrt85, SD=sqrt83. а) Докажите, что SA — высота пирамиды SABCD. б) Найдите угол между прямыми SC и BD
Решение
В основании четырёхугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB=5 и BC=sqrt23 ! Тренировочная работа по математике №2 СтатГрад 11 класс 13.12.2022 Задание 13 Вариант МА2210209 #Задача-аналог   2525   ...X
3244 В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB равна 3, а боковое ребро AA1 равно sqrt3. На ребрах C1D1 и DD1 отмечены соответственно точки K и M так, что D1K=KC1, а DM:MD1=1:3. а) Докажите, что прямые MK и BK перпендикулярны. б) Найдите угол между плоскостями BMK и ABB1
Решение
В правильной четырёхугольной призме ABCDA1B1C1D1 сторона основания AB равна 3, а боковое ребро AA1 равно sqrt 3 ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 18 Задание 13 # Задача-аналог   2574   ...X
2881 Точка O — центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около этого треугольника окружность в точке P. а) Докажите, что /_POA=/_PAO. б) Найдите площадь треугольника APO, если радиус описанной около треугольника ABC окружности равен 6, /_BAC=75^@,
/_ABC=60^@
Решение
Прямая BO вторично пересекает описанную около этого треугольника окружность в точке P ! 36 вариантов ФИПИ Ященко 2022 Вариант 21 Задание 16 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 11 Задание 16 # Задача-аналог   2623   ...X
2877 В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 7. На рёбрах AB и SC отмечены точки K и M соответственно, причем AK:KB=SM:MC=1:5. Плоскость alpha содержит прямую KM и параллельна прямой BC. a) Докажите, что плоскость alpha параллельна прямой SA. б) Найдите угол между плоскостями alpha и SBC
Решение
В правильной треугольной пирамиде SABC сторона основания AB равна 6, а боковое ребро SA равно 7 ! 36 вариантов ФИПИ Ященко 2022 Вариант 21 Задание 13 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 11 Задание 14 # Задача-аналог   1669   ...X
2874 Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1). а) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 9 нулями? б) Существует ли такое натуральное число n, что десятичная запись числа n! оканчивается ровно 23 нулями? в) Сколько существует натуральных чисел n, меньших 100, для каждого из которых десятичная запись числа n∙ (100 — n)! оканчивается ровно 23 нулями
Решение
Для каждого натурального числа n обозначим через n! произведение первых n натуральных чисел (1! = 1) ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 17 Задание 18 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 7 Задание 19 ...X
2873 Найдите, при каких неотрицательных значениях a функция f(x)=3ax^4-8x^3 +3x^2-7 на отрезке [-1; 1] имеет ровно одну точку минимума
Решение     График
Найдите, при каких неотрицательных значениях a функция f(x) на отрезке [-1; 1] имеет ровно одну точку минимума ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 17 Задание 17 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 7 Задание 18 ...X
2872 Александр хочет купить пакет акций быстрорастущей компании. В начале года у Александра не было денег на покупку акций, а пакет стоил 100 000 рублей. В середине каждого месяца Александр откладывает на покупку пакета акций одну и ту же сумму, а в конце месяца пакет дорожает, но не более чем на 30 %. Какую наименьшую сумму нужно откладывать Александру каждый месяц, чтобы через некоторое время купить желаемый пакет акций?
Решение
Александр хочет купить пакет акций быстрорастущей компании ! 36 вариантов ЕГЭ 2022 ФИПИ школе Ященко Вариант 15 Задание 15 # 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 7 Задание 17 ...X
2853 а) Решите уравнение 2sin^2(x)+cos(x)-1=0 б) Найдите все корни этого уравнения, принадлежащие отрезку [-5pi; -4pi].
Решение     График
а) Решите уравнение 2sin2 x + cosx -1 = 0 ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 36 Задание 13 ...X
2852 За круглый стол на 21 стул в случайном порядке рассаживаются 19 мальчиков и 2 девочки. Найдите вероятность того, что девочки не окажутся на соседних местах
Решение
За круглый стол на 21 стул в случайном порядке рассаживаются 19 мальчиков и 2 девочки ! 36 вариантов ЕГЭ 2021 ФИПИ школе Ященко Вариант 35 Задание 4 ...X

К следующей страницеПоказать ещё…

Показана страница 1 из 21

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ по математике чат
  • Егэ по математике углубленный уровень
  • Егэ по математике тренировочный вариант 181
  • Егэ по математике темы каждого задания
  • Егэ по математике сша

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии