Егэ по математике простейшие уравнения

Каталог заданий.
Линейные, квадратные, кубические уравнения


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 5 № 26662

Найдите корень уравнения:  дробь: числитель: 4, знаменатель: 7 конец дроби x= целая часть: 7, дробная часть: числитель: 3, знаменатель: 7 .

Аналоги к заданию № 26662: 10149 9653 9659 9667 9669 9673 9677 9679 9691 9693 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.2 Рациональные уравнения

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


2

Тип 5 № 26663

Найдите корень уравнения:  минус дробь: числитель: 2, знаменатель: 9 конец дроби x= целая часть: 1, дробная часть: числитель: 1, знаменатель: 9 .

Аналоги к заданию № 26663: 9655 10135 9657 9661 9663 9665 9671 9675 9681 9683 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.2 Рациональные уравнения

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


3

Тип 5 № 77368

Решите уравнение  левая круглая скобка 2x плюс 7 правая круглая скобка в квадрате = левая круглая скобка 2x минус 1 правая круглая скобка в квадрате .

Аналоги к заданию № 77368: 100259 100757 509597 509988 510118 513336 513357 100261 100263 100265 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.4.2 Преобразования выражений, включающих операцию возведения в степень, 2.1.2 Рациональные уравнения

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


4

Тип 5 № 77369

Решите уравнение  левая круглая скобка x минус 6 правая круглая скобка в квадрате = минус 24x.

Аналоги к заданию № 77369: 100759 100787 100761 100763 100765 100767 100769 100771 100773 100775 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 1.4.2 Преобразования выражений, включающих операцию возведения в степень, 2.1.2 Рациональные уравнения

Решение

·

·

Курс Д. Д. Гущина

·

2 комментария · Сообщить об ошибке · Помощь


5

Тип 5 № 77371

Найдите корень уравнения  дробь: числитель: 1, знаменатель: 3 конец дроби x в квадрате = целая часть: 16, дробная часть: числитель: 1, знаменатель: 3 . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.

Аналоги к заданию № 77371: 100881 101379 524042 624069 624103 100883 100885 100887 100889 100891 … Все

Кодификатор ФИПИ/Решу ЕГЭ: 2.1.1 Квадратные уравнения, 2.1.2 Рациональные уравнения

Решение

·

·

Курс Д. Д. Гущина

·

3 комментария · Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.

Линейные уравнения

Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$

Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.

$5 (5 + 3х) — 10х = 8$

Раскроем скобки.

$25 + 15х — 10х = 8$

Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.

$15х — 10х = 8 — 25$

Приведем подобные слагаемые.

$5х = -17$ — это конечный результат преобразований.

После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = {b}/{a}$

$х=-{17}/{5}$

$х = — 3,4$

Ответ: $- 3,4$

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение полного квадратного уравнения

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

${3х-5}/{-2}={1}/{х}$

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

Воспользуемся основным свойством пропорции

$х (3х — 5) = -2$

Раскроем скобки и соберем все слагаемые в левой части уравнения

$3х^2- 5х + 2 = 0$

Решим данное квадратное уравнение первым устным способом, т.к.

$a + b + c = 0$

$x_1 = 1, x_2 = {2}/{3}$

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1 = 1, x_2 = {2}/{3}$

Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.

Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

Например,

${2}/{x}+5x=7$ – рациональное уравнение

$3x+√x=7$ — иррациональное уравнение (содержит корень)

Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые обращают в ноль общий знаменатель.

Решить уравнение: $4x+1-{3}/{x}=0$

Решение:

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x ≠ 0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x+1-{3}/{x}=0|·x$

$4x·x+1·x-{3·x}/{x}=0$

3. решаем полученное уравнение

$4x^2+x-3=0$

Решим вторым устным способом, т.к. $а+с=b$

Тогда, $x_1=-1, x_2=-{3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1=-1, x_2=-{3}/{4}$

При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b}={c}/{d}$ — пропорция, то $a·d=b·c$

Решить уравнение ${3x-5}/{-2}={1}/{x}$

Решение:

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

Воспользуемся основным свойством пропорции

$х(3х-5)=-2$

Раскроем скобки и соберем все слагаемые в левой стороне

$3х^2-5х+2=0$

Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$

$x_1=1, x_2={2}/{3}$

В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $x_1=1, x_2={2}/{3}$

Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.

Чтобы решить иррациональное уравнение, необходимо:

  1. Преобразовать заданное иррациональное уравнение к виду: $√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$
  2. Обе части уравнение возвести в квадрат: $√{f(x)}^2=(g(x))^2$ или $√{f(x)}^2=√{g(x)}^2$
  3. Решить полученное рациональное уравнение.
  4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)

Решите уравнение $√{4х-3}=х$. Если уравнение имеет более одного корня, укажите наименьший из них.

Решение:

Обе части уравнение возведем в квадрат:

$√{4х-3}^2=х^2$

Получаем квадратное уравнение:

$4х-3=х^2$

Перенесем все слагаемые в левую часть уравнения:

${-х}^2+4х-3=0$

Решим данное квадратное уравнение устным способом, так как

$a+b+c=0$

$-1+4-3=0$, следовательно $х_1 = 1; х_2={с}/{а}={-3}/{-1}=3$

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$√{4·1-3}=1$

$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.

$√{4·(3)-3}=3$

$√9=3$

$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит

$х_1=1$ наименьший корень.

Ответ: $1$

Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:

  1. Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
  2. Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$

Решить уравнение: $х-6=√{8-х}$

Возведем обе части уравнения в квадрат

$(х-6)^2=8-х$

В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение

$х^2-2·6·х+6^2=8-х$

$х^2-12х+36=8-х$

Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.

$х^2-12х+36-8+х=0$

Приводим подобные слагаемые:

$х^2-11х+28=0$

Найдем корни уравнения через дискриминант:

$D=b^2-4ac=121-4·28=121-112=9=3^2$

$x_{1,2}={-b±√D}/{2a}={11±3}/{2}$

$x_1=7; x_2=4$

Проведем проверку корней, подставив их вместо икса в исходное уравнение

$x_1=7$

$7-6=√{8-7}$

$1=1$, получили верное равенство, следовательно, корень нам подходит.

$x_2=4$

$4-6=√{8-4}$

$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.

Ответ: $7$

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

$a^x=b$

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

$a^n⋅a^m=a^{n+m}$

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

$a^n:a^m=a^{n-m}$

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

$(a^n)^m=a^{n·m}$

4. При возведении в степень произведения в эту степень возводится каждый множитель

$(a·b)^n=a^n·b^n$

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

$({a}/{b})^n={a^n}/{b^n}$

6. При возведении любого основания в нулевой показатель степени результат равен единице

$a^0=1$

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

$a^{-n}={1}/{a^n}$

${a^{-n}}/{b^{-k}}={b^k}/{a^n}$

8. Радикал (корень) можно представить в виде степени с дробным показателем

$√^n{a^k}=a^{{k}/{n}}$

Показательные уравнения часто сводятся к решению уравнения $a^x=a^m$, где, $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели.

Решить уравнение $25·5^х=1$

Решение:

В левой части уравнения необходимо сделать одну степень с основанием $5$ и в правой части уравнения представить число $1$ в виде степени с основанием $5$

$5^2·5^х=5^0$

При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются

$5^{2+х}=5^0$

Далее проговариваем: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели

$2+х=0$

$х=-2$

Ответ: $-2$

Решить уравнение $2^{3х+2}-2^{3х-2}=30$

Решение:

Чтобы решить данное уравнение, вынесем степень с наименьшим показателем как общий множитель

$2^{3x+2}-2^{3x-2}=30$

$2^{3x-2}({2^{3x+2}}/{2^{3x-2}}-{2^{3x-2}}/{2^{3x-2}})=30$

$2^{3x-2}(2^{3x+2-(3x-2)}-1)=30$

$2^{3x-2}(2^4-1)=30$

$2^{3x-2}·15=30$

Разделим обе части уравнения на $15$

$2^{3х-2}=2$

$2^{3х-2}=2^1$

$3х-2=1$

$3х=3$

$х=1$

Ответ: $1$

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Простейшие уравнения»

Открытый банк заданий по теме простейшие уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Задание №887

Условие

Найдите корень уравнения 5^{log_{25}(10x-8)}=8.

Показать решение

Решение

Найдем ОДЗ: 10x-8>0.

5^{log_{25}(10x-8)}=5^{log_58},

log_{25}(10x-8)=log_58,

log_{5^2}(10x-8)=log_58,

frac12log_5(10x-8)=log_58,

log_5(10x-8)=2log_58,

log_5(10x-8)=log_58^2,

10x-8=64, значит, условие 10x-8>0 выполняется.

10x=72,

x=7,2.

Ответ

7,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №886

Условие

Найдите корни уравнения cosfrac{pi(x+5)}{6}=0,5. В ответе напишите наибольший отрицательный корень.

Показать решение

Решение

frac{pi(x+5)}{6}=pmfrac{pi}{3}+2pi k, kin mathbb{Z}.

а) frac{pi(x+5)}{6}=frac{pi}{3}+2pi k, frac{x+5}{6}=frac13+2k, x+5=2+12k, x=-3+12k.

Наибольший отрицательный корень данного вида x=-3.

б) frac{pi(x+5)}{6}=-frac{pi}{3}+2pi k , frac{x+5}{6}=-frac13+2k, x+5=-2+12k, x=-7+12k.

Наибольший отрицательный корень данного вида x=-7.

Значит, наибольший отрицательный корень уравнения x=-3.

Ответ

-3

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №885

Условие

Найдите корень уравнения log_3(28+4x)=log_3(18-x).

Показать решение

Решение

28+4x=18-x,

5x=-10,

x=-2.

Сделаем проверку.

log_3(28+4cdot(-2))=log_3(18-(-2)),

log_3 20=log_3 20. Верно, значит, x=-2 — корень уравнения.

Ответ

-2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №884

Условие

Найдите корень уравнения 4^{4-x}=0,8cdot5^{4-x}.

Показать решение

Решение

4^{4-x}=frac45cdot5^{4-x},

frac{4^{4-x}}{5^{4-x}}=frac45,

left ( frac45 right )^{4-x}=frac45,

4-x=1,

x=3.

Ответ

3

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №883

Условие

Найдите корень уравнения x=frac{3x-8}{x+9}. Если уравнение имеет более одного корня, в ответе укажите больший из них.

Показать решение

Решение

frac{x}{1}=frac{3x-8}{x+9}, при xneq-9 получим x(x+9)=3x-8,

x^2+6x+8=0,

x_{1,2}=-3pm1,

x_1=-4,;x_2=-2.

Больший из корней −2.

Ответ

-2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №882

Условие

Найдите корень уравнения 2^{48-5x}=128.

Показать решение

Решение

2^{48-5x}=2^7,

48-5x=7,

-5x=-41,

x=8,2.

Ответ

8,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №881

Условие

Найдите корень уравнения sqrt{-19x+20}=x. Если уравнение имеет более одного корня, запишите меньший из корней.

Показать решение

Решение

(sqrt{-19x+20})^2=x^2,

-19x+20=x^2,

x^2+19x-20=0,

x_{1,2}=frac{-19pmsqrt{19^2-4cdot(-20)}}{2},

x_1=1,

x_2=-20.

Делаем проверку.

sqrt{-19cdot1+20}=1, это верно, значит, x=1 — корень уравнения.

sqrt{-19cdot(-20)+20}=-20, это неверно, значит, x=-20 — не является корнем уравнения.

Ответ

1

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №880

Условие

Найдите корень уравнения frac{16}{x^2-48}=1. Если уравнение имеет более одного корня, запишите меньший из корней.

Показать решение

Решение

Уравнения frac{16}{x^2-48}=1 и x^2-48=16 равносильны x^2-48neq0. Из последнего уравнения x^2=64,

x_1=-8, x_2=8. Меньший из корней равен −8.

Ответ

-8

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №879

Условие

Найдите корень уравнения x^2-19x+90=0.

Если уравнение имеет более одного корня, укажите меньший из них.

Показать решение

Решение

x_{1,2}=frac{19pmsqrt{19^2-4cdot90}}{2},

x_1=9,

x_2=10.

Меньший из корней равен 9.

Ответ

9

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №878

Условие

Найдите корень уравнения frac{5}{11}x=11frac{4}{11}.

Показать решение

Решение

frac{5}{11}x=frac{125}{11},

x=frac{125}{11}:frac{5}{11},

x=frac{125}{5},

x=25.

Ответ

25

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

1. Линейное уравнение

Сложность:
лёгкое

1

2. Линейное уравнение с дробными коэффициентами

Сложность:
лёгкое

1

3. Наименьший корень

Сложность:
лёгкое

1

4. Наибольший корень

Сложность:
лёгкое

1

5. Полное квадратное уравнение

Сложность:
среднее

2

6. Квадратное уравнение (ФСУ)

Сложность:
среднее

2

7. Квадратное уравнение 2 (ФСУ)

Сложность:
среднее

2

8. Квадратное уравнение (квадрат разности)

Сложность:
среднее

2

9. Квадратное уравнение (неполное)

Сложность:
среднее

2

10. Кубическое уравнение

Сложность:
среднее

2

11. Неполное квадратное уравнение

Сложность:
среднее

2

12. Логарифмическое уравнение 1

Сложность:
среднее

2

13. Логарифмическое уравнение 2

Сложность:
среднее

2

14. Логарифмическое уравнение, сводимое к линейному 1

Сложность:
среднее

2

15. Логарифмическое уравнение, сводимое к линейному 2

Сложность:
среднее

2

16. Сумма логарифмов (потенцирование)

Сложность:
среднее

2

17. Сумма логарифмов

Сложность:
среднее

2

18. Логарифмическое уравнение (определение)

Сложность:
среднее

2

19. Логарифмическое уравнение (логарифм в квадрате)

Сложность:
среднее

2

20. Логарифмическое уравнение

Сложность:
среднее

2

21. Рациональное уравнение

Сложность:
среднее

2

22. Дробно-рациональное уравнение 1

Сложность:
среднее

2

23. Дробно-рациональное уравнение 2

Сложность:
среднее

2

24. Дробно-рациональное уравнение 3

Сложность:
среднее

2

25. Дробно-рациональное уравнение 4

Сложность:
среднее

2

26. Дробно-рациональное уравнение 5

Сложность:
среднее

2

27. Иррациональное уравнение

Сложность:
сложное

3

28. Иррациональное уравнение (дробное)

Сложность:
сложное

3

29. Иррациональное уравнение (линейное)

Сложность:
сложное

3

30. Распадающееся уравнение

Сложность:
сложное

3

31. Разность логарифмов (потенцирование)

Сложность:
сложное

3

32. Логарифмическое уравнение, сводимое к квадратному (обыкновенная дробь)

Сложность:
сложное

3

33. Логарифмическое уравнение (неизвестно основание)

Сложность:
сложное

3

34. Логарифмическое уравнение, разность логарифмов

Сложность:
сложное

3

35. Логарифмическое уравнение, квадрат в основании

Сложность:
сложное

3

36. Логарифмическое уравнение, определение логарифма

Сложность:
сложное

3

37. Логарифмическое уравнение (свойства логарифмов)

Сложность:
сложное

3

38. Показательное уравнение 1

Сложность:
сложное

3

39. Показательное уравнение 2

Сложность:
сложное

3

40. Показательное уравнение 3

Сложность:
сложное

3

41. Показательное уравнение с отрицательным показателем степени

Сложность:
сложное

3

42. Свойства степени в показательном уравнении

Сложность:
сложное

3

43. Тригонометрическое уравнение (тангенс)

Сложность:
сложное

3

44. Тригонометрическое уравнение (синус)

Сложность:
сложное

3

ЕГЭ по математике база

Практика по заданию №9 ЕГЭ по математике базового уровня — простейшие уравнения.

Для выполнения задания №9 необходимо уметь решать уравнения и неравенства.

Практика

Коды проверяемых элементов содержания (по кодификатору) — 2.1.1–2.1.6

Уровень сложности задания — базовый

Максимальный балл за выполнение задания — 1

Примерное время выполнения задания выпускником, изучавшим математику на базовом уровне (в мин.) — 7

Виды уравнений:

1) Линейные уравнения

2) Квадратные уравнения

3) Иррациональные уравнения

4) Показательные уравнения

5) Логарифмические уравнения

Связанные страницы:

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ по математике показательные неравенства
  • Егэ по математике площадь поверхности составного многогранника
  • Егэ по математике площадь криволинейной трапеции
  • Егэ по математике перевод баллов в отметки
  • Егэ по математике отменят или нет

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии