Егэ по математике рациональные уравнения

Skip to content

ЕГЭ Профиль №13. Рациональные уравнения

ЕГЭ Профиль №13. Рациональные уравненияadmin2021-07-04T13:37:40+03:00

Используйте LaTeX для набора формулы

«Рациональные уравнения с многочленами» — одна из самых часто встречающихся тем в тестовых заданиях ЕГЭ по математике. По этой причине их повторению стоит уделить особое внимание. Многие ученики сталкиваются с проблемой нахождения дискриминанта, перенесения показателей из правой части в левую и приведения уравнения к общему знаменателю, из-за чего выполнение подобных заданий вызывает трудности. Решение рациональных уравнений при подготовке к ЕГЭ на нашем сайте поможет вам быстро справляться с задачами любой сложности и сдать тестирование на отлично.

Выбирайте образовательный портал «Школково» для успешной подготовки к единому экзамену по математике!

Чтобы знать правила вычисления неизвестных и легко получать правильные результаты, воспользуйтесь нашим онлайн-сервисом. Портал «Школково» — это единственная в своем роде площадка, где собраны необходимые для подготовки к ЕГЭ материалы. Наши преподаватели систематизировали и изложили в понятной форме все математические правила. Кроме того, мы предлагаем школьникам попробовать силы в решении типовых рациональных уравнений, база которых постоянно обновляется и дополняется.

Для более результативной подготовки к тестированию рекомендуем следовать нашему особому методу и начать с повторения правил и решения простых задач, постепенно переходя к более сложным. Таким образом, выпускник сможет выделить для себя самые трудные темы и сделать акцент на их изучении.

Начните подготовку к итоговому тестированию со «Школково» уже сегодня, и результат не заставит себя ждать! Выберите самый легкий пример из предложенных. Если вы быстро справились с выражением, переходите к более сложной задаче. Так вы сможете подтянуть свои знания вплоть до решения заданий ЕГЭ по математике профильного уровня.

Обучение доступно не только выпускникам из Москвы, но и школьникам из других городов. Уделяйте пару часов в день занятиям на нашем портале, например, решению кубических уравнений и совсем скоро вы сможете справиться с уравнениями любой сложности!

Задания по теме «Рациональные уравнения»

Открытый банк заданий по теме рациональные уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Задание №883

Условие

Найдите корень уравнения x=frac<3x-8>. Если уравнение имеет более одного корня, в ответе укажите больший из них.

Решение

frac<1>=frac<3x-8>, при xneq-9 получим x(x+9)=3x-8,

Больший из корней −2 .

Ответ

Задание №880

Условие

Найдите корень уравнения frac<16>=1. Если уравнение имеет более одного корня, запишите меньший из корней.

Решение

Уравнения frac<16>=1 и x^2-48=16 равносильны x^2-48neq0. Из последнего уравнения x^2=64,

x_1=-8, x_2=8. Меньший из корней равен −8 .

Уравнения, часть С

Теория к заданию 13 из ЕГЭ по математике (профильной)

Уравнения, часть $С$

Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.

Схема решения сложных уравнений:

  1. Перед решением уравнения надо для него записать область допустимых значений (ОДЗ).
  2. Решить уравнение.
  3. Выбрать из полученных корней уравнения то, которые удовлетворяют ОДЗ.

ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):

1. Выражение, стоящее в знаменателе, не должно равняться нулю.

2. Подкоренное выражение, должно быть не отрицательным.

3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.

4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.

Логарифмические уравнения

Для решения логарифмических уравнений необходимо знать свойства логарифмов: все свойства логарифмов мы будем рассматривать для $a > 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.

1. Для любых действительных чисел $m$ и $n$ справедливы равенства:

2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.

3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию

4. При умножении двух логарифмов можно поменять местами их основания

6. Формула перехода к новому основанию

7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение

Можно выделить несколько основных видов логарифмических уравнений:

Представим обе части уравнения в виде логарифма по основанию $2$

Если логарифмы по одинаковому основанию равны, то подлогарифмические выражения тоже равны.

Т.к. основания одинаковые, то приравниваем подлогарифмические выражения

Перенесем все слагаемые в левую часть уравнения и приводим подобные слагаемые

Проверим найденные корни по условиям $table< x^2-3x-5>0; 7-2x>0;$

При подстановке во второе неравенство корень $х=4$ не удовлетворяет условию, следовательно, он посторонний корень

  • Метод замены переменной.

В данном методе надо:

Решите уравнение $log_<2>√x+2log_<√x>2-3=0$

1. Запишем ОДЗ уравнения:

$table< х>0,text»так как стоит под знаком корня и логарифма»; √х≠1→х≠1;$

2. Сделаем логарифмы по основанию $2$, для этого воспользуемся во втором слагаемом правилом перехода к новому основанию:

3. Далее сделаем замену переменной $log_<2>√x=t$

4. Получим дробно — рациональное уравнение относительно переменной t

Приведем все слагаемые к общему знаменателю $t$.

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.

5. Решим полученное квадратное уравнение по теореме Виета:

6. Вернемся в п.3, сделаем обратную замену и получим два простых логарифмических уравнения:

Прологарифмируем правые части уравнений

Приравняем подлогарифмические выражения

Чтобы избавиться от корня, возведем обе части уравнения в квадрат

7. Подставим корни логарифмического уравнения в п.1 и проверим условие ОДЗ.

Первый корень удовлетворяет ОДЗ.

$<table 16 >0; 16≠1;$ Второй корень тоже удовлетворяет ОДЗ.

  • Уравнения вида $log_x+log_x+c=0$. Такие уравнения решаются способом введения новой переменной и переходом к обычному квадратному уравнению. После того, как корни уравнения будут найдены, надо отобрать их с учетом ОДЗ.

Дробно рациональные уравнения

  • Если дробь равна нулю, то числитель равен нулю, а знаменатель не равен нулю.
  • Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно-рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ)
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые не удовлетворяют условию ОДЗ.
  • Если в уравнении участвуют две дроби и числители их равные выражения, то знаменатели можно приравнять друг к другу и решить полученное уравнение, не обращая внимание на числители. НО учитывая ОДЗ всего первоначального уравнения.

Показательные уравнения

Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.

При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:

1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.

2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются

3. При возведении степени в степень основание остается прежним, а показатели перемножаются

4. При возведении в степень произведения в эту степень возводится каждый множитель

5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель

6. При возведении любого основания в нулевой показатель степени результат равен единице

7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби

8. Радикал (корень) можно представить в виде степени с дробным показателем

Виды показательных уравнений:

1. Простые показательные уравнения:

а) Вида $a^=a^$, где $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием ($а >0, a≠1$) равны только тогда, когда равны их показатели.

b) Уравнение вида $a^=b, b>0$

Для решения таких уравнений надо обе части прологарифмировать по основанию $a$, получается

2. Метод уравнивания оснований.

3. Метод разложения на множители и замены переменной.

  • Для данного метода во всем уравнении по свойству степеней надо преобразовать степени к одному виду $a^$.
  • Сделать замену переменной $a^=t, t > 0$.
  • Получаем рациональное уравнение, которое необходимо решить путем разложения на множители выражения.
  • Делаем обратные замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.

По свойству степеней преобразуем выражение так, чтобы получилась степень 2^x.

Сделаем замену переменной $2^x=t; t>0$

Получаем кубическое уравнение вида

Умножим все уравнение на $2$, чтобы избавиться от знаменателей

Разложим левую часть уравнения методом группировки

Вынесем из первой скобки общий множитель $2$, из второй $7t$

Дополнительно в первой скобке видим формулу разность кубов

Далее скобку $(t-1)$ как общий множитель вынесем вперед

Произведение равно нулю, когда хотя бы один из множителей равен нулю

Решим первое уравнение

Решим второе уравнение через дискриминант

Получили три корня, далее делаем обратную замену и получаем три простых показательных уравнения

4. Метод преобразования в квадратное уравнение

  • Имеем уравнение вида $А·a^<2f(x)>+В·a^+С=0$, где $А, В$ и $С$ — коэффициенты.
  • Делаем замену $a^=t, t > 0$.
  • Получается квадратное уравнение вида $A·t^2+B·t+С=0$. Решаем полученное уравнение.
  • Делаем обратную замену с учетом того, что $t > 0$. Получаем простейшее показательное уравнение $a^=t$, решаем его и результат записываем в ответ.

Способы разложения на множители:

  • Вынесение общего множителя за скобки.

Чтобы разложить многочлен на множители путем вынесения за скобки общего множителя надо:

  1. Определить общий множитель.
  2. Разделить на него данный многочлен.
  3. Записать произведение общего множителя и полученного частного (заключив это частное в скобки).

Разложить на множители многочлен: $10a^<3>b-8a^<2>b^2+2a$.

Общий множитель у данного многочлена $2а$, так как на $2$ и на «а» делятся все члены. Далее найдем частное от деления исходного многочлена на «2а», получаем:

Это и есть конечный результат разложения на множители.

Применение формул сокращенного умножения

1. Квадрат суммы раскладывается на квадрат первого числа плюс удвоенное произведение первого числа на второе число и плюс квадрат второго числа.

2. Квадрат разности раскладывается на квадрат первого числа минус удвоенное произведение первого числа на второе и плюс квадрат второго числа.

3. Разность квадратов раскладывается на произведение разности чисел и их сумму.

4. Куб суммы равен кубу первого числа плюс утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа плюс куб второго числа.

5. Куб разности равен кубу первого числа минус утроенное произведение квадрата первого на второе число плюс утроенное произведение первого на квадрат второго числа и минус куб второго числа.

6. Сумма кубов равна произведению суммы чисел на неполный квадрат разности.

7. Разность кубов равна произведению разности чисел на неполный квадрат суммы.

Метод группировки

Методом группировки удобно пользоваться, когда на множители необходимо разложить многочлен с четным количеством слагаемых. В данном способе необходимо собрать слагаемые по группам и вынести из каждой группы общий множитель за скобку. У нескольких групп после вынесения в скобках должны получиться одинаковые выражения, далее эту скобку как общий множитель выносим вперед и умножаем на скобку полученного частного.

Разложить многочлен на множители $2a^3-a^2+4a-2$

Для разложения данного многочлена применим метод группировки слагаемых, для этого сгруппируем первые два и последние два слагаемых, при этом важно правильно поставить знак перед второй группировкой, мы поставим знак + и поэтому в скобках запишем слагаемые со своими знаками.

Далее из каждой группы вынесем общий множитель

После вынесения общих множителей получили пару одинаковых скобок. Теперь данную скобку выносим как общий множитель.

Произведение данных скобок — это конечный результат разложения на множители.

С помощью формулы квадратного трехчлена.

Если имеется квадратный трехчлен вида $ax^2+bx+c$, то его можно разложить по формуле

$ax^2+bx+c=a(x-x_1)(x-x_2)$, где $x_1$ и $x_2$ — корни квадратного трехчлена

Задание № 13 ЕГЭ по математике — подборка задач с решениями

Подборка задач № 13 ЕГЭ по профильной математике с решениями.

Задание № 13. Уметь решать уравнения и неравенства

Из кодификатора на этой позиции могут встретиться темы:

Уравнения

Равносильность уравнений, систем уравнений

Простейшие системы уравнений с двумя неизвестными

Основные приёмы решения систем уравнений: подстановка, алгебраическое сложение, введение новых переменных

Использование свойств и графиков функций при решении уравнений

Изображение на координатной плоскости множества решений уравнений с двумя переменными и их систем

Применение математических методов для решения содержательных задач из различных областей науки и практики. Интерпретация результата, учёт реальных ограничений.

Неравенства

Системы линейных неравенств

Системы неравенств с одной переменной

Равносильность неравенств, систем неравенств

Использование свойств и графиков функций при решении неравенств

Изображение на координатной плоскости множества решений неравенств с двумя переменными и их систем

источники:

http://examer.ru/ege_po_matematike/teoriya/logarifmicheskie_i_pokazatelnue_uravneniya

http://vpr-ege.ru/ege/matematika/706-zadanie-13-ege-po-matematike-podborka-zadach-s-resheniyami

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Рациональные уравнения»

Открытый банк заданий по теме рациональные уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Задание №883

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения x=frac{3x-8}{x+9}. Если уравнение имеет более одного корня, в ответе укажите больший из них.

Показать решение

Решение

frac{x}{1}=frac{3x-8}{x+9}, при xneq-9 получим x(x+9)=3x-8,

x^2+6x+8=0,

x_{1,2}=-3pm1,

x_1=-4,;x_2=-2.

Больший из корней −2.

Ответ

-2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №880

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения frac{16}{x^2-48}=1. Если уравнение имеет более одного корня, запишите меньший из корней.

Показать решение

Решение

Уравнения frac{16}{x^2-48}=1 и x^2-48=16 равносильны x^2-48neq0. Из последнего уравнения x^2=64,

x_1=-8, x_2=8. Меньший из корней равен −8.

Ответ

-8

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №285

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения frac{2x+4}{3x+17}=frac{2x+4}{17x+3}. Если уравнение имеет более одного корня, в ответе запишите больший корень.

Показать решение

Решение

(2x+4)(17x+3)=(2x+4)(3x+17),

(2x+4)(17x+3-3x-17)=0,

x_1=-2,

14x-14=0,

x_2=1.

Больший корень из двух равен 1.

Ответ

1

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №39

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения: frac{1}{2x+7}=5

Показать решение

Решение

Возведем левую и правую части уравнения в степень −1:

2x+7=frac{1}{5}

2x=frac{1}{5}-7=frac{1}{5}-frac{35}{5}=-frac{34}{5}

x=-frac{34}{10}=-3,4

Ответ

-3,4

Задание №38

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения: frac{1}{5x+8}=frac{1}{3}

Показать решение

Решение

Возведем левую и правую части уравнения в степень −1:

5x+8=3

5x=-5

x=-1

Ответ

-1

Задание №37

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения: frac{1}{8x+3}=5

Показать решение

Решение

Возведем левую и правую части уравнения в степень −1:

8x+3=frac{1}{5}

8x=-frac{14}{5}

x=-frac{14}{40}=-0,35

Ответ

-0,35

Задание №36

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения: frac{1}{12x-11}=frac{1}{4}

Показать решение

Решение

Возведем левую и правую части уравнения в степень −1:

12x-11=4

12x=15

x=frac{15}{12}=1frac{3}{12}=1frac{1}{4}=1,25

Ответ

1,25

Задание №29

Тип задания: 5
Тема:
Рациональные уравнения

Условие

Найдите корень уравнения: frac{1}{3x-1}=5

Показать решение

Решение

Возведем левую и правую части уравнения в степень −1:

3x-1=frac{1}{5}

3x=frac{1}{5}+1=frac{6}{5}

x=frac{6}{5cdot 3}=frac{2}{5}=0,4

Ответ

0,4

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Егэ по математике профиль ященко 2019
  • Егэ по математике профиль ютуб
  • Егэ по математике профиль 2021 порог минимальный
  • Егэ по математике профиль ширяева
  • Егэ по математике профиль 2021 основная волна

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии