Задание 11 первой части Профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной.
Вот какие типы задач могут встретиться в этом задании:
Нахождение точек максимума и минимума функций
Исследование сложных функций
Нахождение наибольших и наименьших значений функций на отрезке
Нахождение точек максимума и минимума функций
1. Найдите точку максимума функции
Найдем производную функции.
Приравняем производную к нулю. Получим:
Исследуем знаки производной.
В точке производная
меняет знак с «плюса» на «минус». Значит,
— точка максимума функции
Ответ: 17.
2. Найдите точку минимума функции
Найдем производную функции.
Приравняем производную к нулю.
Определим знаки производной.
В точке производная
меняет знак с «минуса» на «плюс». Значит,
— точка минимума функции
Ответ: 1.
Исследование сложных функций
3. Найдите точку максимума функции
Перед нами сложная функция Возможно, вы знаете формулы производной сложной функции. Но вообще-то их изучают на первом курсе вуза, поэтому мы решим задачу более простым способом.
Так как функция монотонно возрастает, точка максимума функции
будет при том же
, что и точка максимума функции
А ее найти легко.
при
. В точке
производная
меняет знак с «плюса» на «минус». Значит,
— точка максимума функции
.
Заметим, что точку максимума функции можно найти и без производной.
Графиком функции является парабола ветвями вниз, и наибольшее значение
достигается в вершине параболы, то есть при
Ответ: — 4.
4. Найдите абсциссу точки максимума функции
Напомним, что абсцисса — это координата по
Снова сложная функция. Применяем тот же прием, что и в предыдущей задаче.
Так как функция монотонно возрастает, точка максимума функции
является и точкой максимума функции
Это вершина квадратичной параболы
Нахождение наибольших и наименьших значений функций на отрезке
5. Найдите наибольшее значение функции на отрезке
Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке.
Будем искать точку максимума функции с помощью производной. Найдем производную и приравняем ее к нулю.
Найдем знаки производной.
В точке производная равна нулю и меняет знак с «+» на «-«. Значит, x = — 2 — точка максимума функции
. Поскольку при
функция
убывает,
В этой задаче значение функции на концах отрезка искать не нужно.
Ответ: 12.
6. Найдите наименьшее значение функции на отрезке
Найдем производную функции и приравняем ее к нулю.
при
Найдем знаки производной.
Точка — точка минимума функции
. Точка
не лежит на отрезке
Поэтому
и
Значит, наименьшее значение функции на отрезке
достигается при
Найдем это значение.
Ответ: -11.
7. Найдите наименьшее значение функции на отрезке
Иногда перед тем, как взять производную, формулу функции полезно упростить.
Мы применили формулу для логарифма произведения. при
Если то
Если
, то
Значит, — точка минимума функции
. В этой точке и достигается наименьшее значение функции на отрезке
Ответ: 4.
8. Найдите наибольшее значение функции на отрезке
Найдем производную функции
Приравняем производную к нулю:
. Поскольку
если
Найдем знаки производной на отрезке
При знак производной меняется с «плюса» на «минус». Значит,
— точка максимума функции
Мы нашли точку максимума, но это еще не все. Сравним значения функции в точке максимума и на конце отрезка, то есть при и
Мы нашли, что
Заметим, что если вам попадется такая задача в первой части ЕГЭ по математике, то находить значение функции при не обязательно. Как мы видим, это значение — число иррациональное. А в первой части ЕГЭ по математике ответом может быть только целое число или конечная десятичная дробь.
Ответ: 4.
9. Найдите наименьшее значение функции на отрезке [0;2].
Снова сложная функция. Запишем полезные формулы:
Найдем производную функции
если
Тогда
При
знак производной меняется с «минуса» на «плюс». Значит,
— точка минимума функции
Ответ: -7.
10. Найдите наибольшее значение функции на отрезке
Как всегда, возьмем производную функции и приравняем ее к нулю.
По условию, . На этом отрезке условие
выполняется только для
Найдем знаки производной слева и справа от точки
В точке производная функции меняет знак с «плюса» на «минус». Значит, точка
— точка максимума функции
. Других точек экстремума на отрезке
функция не имеет, и наибольшее значение функции
на отрезке
достигается при
Ответ: 12.
11.Найдите наименьшее значение функции на отрезке
Найдем производную функции и приравняем ее к нулю. — нет решений.
Что это значит? Производная функции не равна нулю ни в какой точке. Это значит, что знак производной в любой точке одинаков, а функция не имеет экстремумов и является монотонной.
Поскольку , получим, что
для всех
, и функция
монотонно возрастает при
Значит, наименьшее свое значение функция принимает в левом конце отрезка , то есть при
Ответ: 6
Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Задание 11 Профильного ЕГЭ по математике» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
09.03.2023
По мнению выпускников, задание № 11 — самое сложное в первой части ЕГЭ по математике. Ведь там… производная! На деле не стоит бояться — все задания можно решить, зная только 2 алгоритма. В этой статье я о них расскажу! А еще поделюсь полезным лайфхаком, как решать некоторые задания на производную в ЕГЭ, вообще не используя алгоритм и экономя драгоценное время.
Хочешь круто подготовится к ЕГЭ по математике? Тебе поможет учебный центр MAXIMUM! Все наши преподаватели сами сдавали этот экзамен на хороший балл. Мы ежегодно изучаем изменения ФИПИ и корректируем курсы, исходя из этого. Читай подробнее про наши курсы и выбирай подходящий!
Почему задания на производную решает только 40% выпускников?
Ни для кого не секрет, что профильный ЕГЭ по математике состоит из частей с кратким и развёрнутым ответом. В первой части всего 11 заданий. В том числе и интересующее нас задание № 11.
Задание № 11 проверяет, умеют ли выпускники работать с производной. По статистике его решают около 40% всех сдающих экзамен, что для первой части ЕГЭ по математике очень мало.
Проблема этого задания в том, что производную проходят только в середине 11 класса, когда уже активно идет подготовка к ЕГЭ по другим темам. Из-за этого школьники не успевают ее отработать.
Два прототипа задания № 11 ЕГЭ по математике
В этом номере есть всего два типа заданий, которые можно решить с помощью простых алгоритмов. Ученикам нужно лишь запомнить их и выучить таблицу производных.
Сначала необходимо понять, что именно от нас хотят в задании — расскажу небольшой лайфхак. Многие ученики путают понятия «точка максимума / минимума» и «наибольшее / наименьшее значение». Дело в том, что точка экстремума – это x, а наибольшее или наименьшее значение – это у. Как не запутаться? Обрати внимание на слово-маркер «точка». Если ты видишь его, то речь идет об х, если этого слова нет, то речь об у.
Поиск точек экстремума
Теперь, когда мы разобрались, как не запутаться и понять, что необходимо найти в задаче, приступим к разбору самих заданий и алгоритмов к ним. Начнём с поиска точек экстремума. Чтобы провести анализ функции, необходимо определить основные этапы. У функции есть точки экстремума, в них производная равна нулю. Единственный способ, определить, является ли данная точка точкой максимума или минимума – это определить знаки производной до и после неё, если знак производной меняется с «–» на «+», то это будет точка минимума, а если с «+» на «–», то точка максимума. Таким образом общий порядок действий будет следующим:
Данному алгоритму подчиняются абсолютно все задания, в которых нужно найти точки экстремума.
Поиск наибольшего / наименьшего значения функции
Перейдём ко второму прототипу, в котором нужно найти наибольшее/наименьшее значение функции. Интересно, что второй прототип можно отличить даже визуально, потому что кроме самой функции вам будет дан ещё промежуток, ограничивающий функцию в двух точках [a; b]. Так как мы про эти точки ничего не знаем, их придётся дополнительно учитывать. В остальном начало этого алгоритма будет совпадать с предыдущим. Начинать всегда будем именно с точек экстремума, потом проверим, как ведёт себя функция в каждой точке экстремума, а также в начале и конце заданного промежутка, и в итоге запишем в ответ нужное значение функции.
Лайфак, чтобы решать задания на производную в ЕГЭ
Давайте посмотрим на некоторые задания, которые можно решить гораздо быстрее, не прибегая к использованию алгоритмов. Лайфхаки не работают на абсолютно всех заданиях, поэтому будьте аккуратны, применяя их!
Лайфхак, которые мы рассмотрим сегодня, будет опираться на знание формата экзамена. № 11 – задание из части с кратким ответом, ответ на который мы пишем в клеточки на бланке, а чего в этих клеточках не может быть? Очевидно, что бесконечную дробь, буквы 𝑒, ln(…), log(…), 𝜋, sin𝑥, бесконечность и прочие знаки мы не сможем записать, и это очень сильно упрощает нам задачу.
Разбираем лайфхак на примере
Чтобы выполнить данное задание, необходимо знать таблицу производных и немного порассуждать логически. Если мы пойдём по алгоритму, нам придётся брать производную от e в степени (x-9), а производная от данной функции будет равна тому же самому. И получается, что мы никак не можем избавиться от символа, которого просто не может быть в ответе.
Или можем? Есть замечательная степень, которая абсолютно любое основание может превратить в единицу — это 0. Таким образом, мы можем избавиться от е, если представим её степень (х – 9) равной нулю. Получается х – 9 = 0, тогда х = 9.
Но единственный ли это способ избавиться от «е»? На самом деле нет, так как есть ещё один множитель – скобка. Ее можно занулить, тогда занулится и всё произведение. Получим 10 – х = 0, тогда х = 10. Но не стоит забывать, что найти нас просят наименьшее значение ФУНЦИИ, поэтому теперь подставим найденные х в исходную функцию.
При х = 9 получаем 1, а при х = 10 получаем 0. Видим, что значение 0 меньше, чем 1, а значит именно его мы запишем в ответ. Обратите внимание, что оно достигается при х = 10, поэтому критично важно учитывать как степень экспоненты, так и множитель-скобку.
В этой статье мы рассмотрели два алгоритма, с помощью которых можно решить абсолютно любое задание № 11 ЕГЭ по математике. А еще вы узнали лайфхак, как можно выполнить задание на производную в ЕГЭ, не прибегая к использованию алгоритма, и сэкономить время!
- Учите производную
- Пользуйтесь алгоритмами
- Не забывайте про крутые лайфхаки, но будьте внимательны, применяя их!
Если хочешь разобраться в остальных темах по математике и не только, почитай другие статьи в блоге и обрати внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ЕГЭ. Кстати, у меня на курсах MAXIMUM тоже можно поучиться!
Решение заданий ЕГЭ по теме: «Наибольшее и наименьшее значения функции» Задание 11 ЕГЭ 2022 по математике профильного уровня.
→ скачать презентацию
Для выполнения задания 11 необходимо уметь выполнять действия с функциями
Примеры заданий:
Задание №1. Найдите точку минимума функции y=x3-9x2+12.
Задание №2. Найдите наибольшее значение функции 𝑦 =𝑥3/4− 27𝑥 + 11 на отрезке −[8; 0].
Задание № 3. Найдите наибольшее значение функции 𝑦 = (𝑥 + 9) 2 ⋅ (𝑥 − 5) − 5 на отрезке [−19; −5] .
Основные понятия
Точка минимума — такая точка x0, если у неё существует окрестность, для всех точек которой выполняется неравенство f(x)>f(x0)
Минимум функции — значение функции в точке минимума x0
Точка максимума — такая точка x0 , если у неё существует окрестность, для всех точек которой выполняется неравенство f(x)<f(x0)
Максимум функции — значение функции в точке максимума x0
Точки минимума и точки максимума называются точками экстремума.
Точки, в которых производная функции равна нулю или не существует, называются критическими точками.
Экстремумы могут существовать только в критических точках. Однако, не все критические точки являются экстремумами.
Теорема (достаточный признак существования экстремума функции).
Критическая точка x0 является точкой экстремума функции f(x), если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с «плюса» на «минус», то точкой максимума, а если с «минуса» на «плюс», то точкой минимума.
Связанные страницы:
Выпускники, прошедшие через ЕГЭ по математике, отмечают, что задание под номером 11 – самое сложное в первой части профильного варианта. Весь сыр-бор из-за производной.
Переживать из-за производной не стоит, пользуясь всего лишь двумя алгоритмами, можно решить абсолютно любое задание с ней, эта статья посвящена им. Также в материале будут представлены интересные хитрости, позволяющие быстро решать задачи из ЕГЭ на производную, без каких-либо алгоритмов.
В этом материале:
- Почему только 40 процентов сдающих успешно справляются с производной в ЕГЭ
- Как выглядят два прототипа 11 задания из первой части профильной математики ЕГЭ
- Как найти две точки экстремума функции
- Как найти наибольшее или наименьшее значение функции
- Хитрость, помогающая быстро разобраться с производной в ЕГЭ
Все, кто хоть немного знаком с темой выпускного госэкзамена (например, те, кто ходят на онлайн занятия по математике к репетитору), в курсе, что профильный вариант математики содержит две части: с кратким ответом и подробным ответом. Краткая часть содержит 11 заданий, последнее связано с производной, вот на нем следует остановиться подробнее.
Задача задания: выяснить, знают ли сдающие школьники понятие производной и умеют ли они вычислять ее. Статистика показывает, что 60% из них не в состоянии успешно выполнить это задание, это большая цифра.
В оправдание сдающих можно сказать то, что тема производной впервые рассматривается на уроках математики в выпускном классе, в середине года, у школьников просто не хватает времени хорошо проработать тему.
Как выглядят два прототипа 11 задания из первой части профильной математики ЕГЭ?
Для упрощения задачи выпускникам составители придумали сделать два вида задания, каждое из них решается по одному и тому же алгоритму, отличаются только числа и буквы. Чтобы успешно справиться с одним из прототипов, требуется только запомнить таблицу производных, также стоит походить на онлайн занятия математикой.
Прежде чем приступить к решению, стоит разобраться в сути задания. Существует небольшая хитрость для этого. Выпускники плохо ориентируются в понятиях, они не могут отличить «точку максимума» от «точки минимума», «наибольшее» или «наименьшее значение» функции.
Точку экстремума (максимума или минимума) функции принято обозначать буквой x, а наибольшее или наименьшее значение принято обозначать буквой y. Здесь легко растеряться и ошибиться. Чтобы этого избежать, нужно обратить внимание на слово «точка экстремума». Слово «точка» – маркер, если оно есть в задании, значит требуется найти x, в противном случае – y.
Для работы в Учи.Дома мы тщательно отбираем онлайн репетиторов по математике, которые зажигают в детях интерес к предмету. Их профессионализм и энергичность дают потрясающий результат: ученики с нетерпением ждут новых занятий и без напоминаний выполняют домашние задания.
Как найти две точки экстремума функции?
Если ученик понял разницу между x и y, нужно перейти к следующей части – поиску точек экстремума. Математическая функция содержит две точки, в которых производная равняется нулю. Чтобы понять, где точка минимума, а где максимума – нужно обратить внимание на то, какой знак у производной до и после точки. Если до знак был «+», а стал «-», то это точка максимума, и наоборот, если знак до точки был «-» – это точка минимума. Алгоритм работает следующим образом:
Он универсален для каждого прототипа 11 задания, где требуется найти точки максимума или минимума. Такой метод часто репетиторы разбирают на онлайн занятиях математикой.
Как найти наибольшее или наименьшее значение функции?
Второй тип задания отличается от первого даже своим видом, а не только формулировкой. Сдающему представляется не только сама функция, но и ее отдельный промежуток вида [a, b]. Изначально про точки этого промежутка нет никакой информации, но на них следует обратить внимание.
Начало алгоритма похоже на предыдущий: нужно найти точки максимума и минимума, определить изменение функций в этих точках. После этого нужно приступить к данному в задании промежутку – определить поведение функции в его точках.
Хитрость, помогающая быстро разобраться с производной в ЕГЭ
Для части заданий можно проигнорировать указанные выше алгоритмы, сделать все проще и быстрее с помощью маленькой хитрости. Стоит быть внимательным при ее использовании чтобы не ошибиться, она не работает для всех заданий.
Хитрость относится к формату ЕГЭ, задание номер 11 требует краткого ответа. Это значит, что в бланк ответов нельзя вписать бесконечную дробь, некоторые математические знаки, обозначающие числа (например, число Пи или число Е), знаки для синуса, логарифма и т.д. Для подкованного выпускника – это упрощение решения.
Хотите, чтобы ваш ребенок полюбил математику с младших классов? Запишите его на бесплатный вводный урок, где мы покажем, каким увлекательным может быть этот «сложный» предмет.
Пример использования хитрости
Для успешного выполнения ученик должен наизусть помнить таблицу производных, далее – простая логика.
В задании есть число Е, значит, придется брать производную от него, причем ответ будет тем же самым числом. Поскольку в бланке ответов число Е вписать нельзя, становится понятно, что основная задача – это избавиться от него. Но возможно ли это сделать? Да, если вспомнить свойства степеней и одну хитрость.
В указанном примере нужно превратить число в единицу, поскольку Е – это основание степени, нужно, чтобы его показатель был равен нулю. Получается – (x — 9) = 0. При таком раскладе даже второклассник сможет найти икс, он равен 9.
Можно по-другому избавиться от числа. Скобки в примере – тоже своего рода множитель. Если представить, что результат действий в скобках равен нулю, то получается, что 10 – x = 0. Икс находится так же просто, он равен уменьшаемому – десяти.
На этом решение не заканчивается. В задании потребовалось найти наименьшее значение функции – нужно подставить икс в данную функцию.
В первом примере, когда икс равен 9 – значение функции игрек равно 1, в другом примере, где икс равен 10, игрек равен 0. Второе значение меньше первого, значит нужно именно его вписать в ответ.
Чтобы вписать правильный ответ, нужно применить оба метода для того, чтобы найти именно наименьшее или наибольшее значение.
Применяя оба метода, довольно легко можно решить любое 11 задание в ЕГЭ. Не стоит забывать и про хитрости формата, для упрощения задачи. Но лучше все же ходить и на онлайн занятия математикой к репетиторам, чтобы быть уверенным в успешной сдаче экзамена.
Что следует запомнить:
- Нужно учить таблицы производных;
- Алгоритмы – удобный и верный способ решения;
- При использовании хитростей нужно обращать внимание на производную.
Как решать 11 задание в ЕГЭ по математике (профиль) правильно? Нужно определить тип: поиск точки экстремума функции или поиск наибольшего/наименьшего значения функции, а затем воспользоваться алгоритмом.
Общие правила
Задание номер 11 в ЕГЭ по математике (профиль) входит в первую часть экзамена и считается одним из самых сложных. Все дело в том, что здесь проверяется ваше умение решать задачи на производную – к сожалению, эта тема непонятна очень и очень многим.
Но ничего страшного – мы составили гайд с подсказками по решению задания 11 в ЕГЭ по математике (профиль). И первым делом расскажем о двух основных типах задач, которые можно встретить.
- Поиск точки минимума или точки максимума функции
- Поиск наибольшего значения функции или наименьшего значения функции
Чуть ниже мы поговорим об алгоритмах выполнения задания 11 ЕГЭ, но сначала приведем базовые термины, которые вам стоит знать. Если вы до сих пор не справлялись с решением задач на производную, нужно начать с изучения теории.
- Точка максимума – такая точка x0 , если у неё существует окрестность, для всех точек которой выполняется неравенство f(x)<f(x0);
- Точка минимума – такая точка x0, если у неё существует окрестность, для всех точек которой выполняется неравенство f(x)>f(x0);
- Максимум функции – значение функции в точке максимума x0;
- Минимум функции – значение функции в точке минимума x0.
Точки минимума и точки максимума называются точками экстремума, а точки, в которых производная функции равна нулю или не существует, называются критическими точками.
Экстремумы могут существовать только в критических точках. Однако, не все критические точки являются экстремумами.
Для успешного решения нужно запомнить несколько несложных формул для 11 задания ЕГЭ по математике (профиль): u, v, f — это функции, а c — константа (любое число).
- (c ⋅ f)′ = c ⋅ f′
- (u + v)′ = u′ + v′
- (u — v)′ = u′ — v′
- (u ⋅ v)′ = u′v + v′u
- (u/v)’ = (u’v — v’u)/v2
Еще немного теории для 11 задания ЕГЭ по профильной математике. Существуют и сложные функции – когда одна функция вложена в другую. Найти производную можно с помощью умножения производной внешней функции на производную внутренней функции – воспользуйтесь формулой (f(y))′ = f′(y) ⋅ y′.
Поиск точек экстремума
Первый тип задания номер 11 в ЕГЭ по математике профильного уровня – поиск точки минимума или точки максимума функции.
Алгоритм несложный, делаем следующее:
- Сначала необходимо найти производную;
- Второй шаг – поиск точек экстремума;
- Далее необходимо приравнять производную к нулю и решить получившееся уравнение.
Теперь можно переходить к следующему этапу:
- Нарисуйте ось и отметьте на ней корни: сверху опишите производную, снизу – саму функцию;
- Найдите знаки производной в интервалах между корнями (подставьте удобные числа из интервалов в производную);
- Определите вид каждого экстремума: если переход с «-» на «+», значит, точка минимума (или, наоборот, точка максимума, если переход с «+» на «-»).
Приводим разбор 11 задания ЕГЭ по математике (профиль). Это классический вариант!
Задание: найдите точку минимума функции y = x3 – 9×2 + 12.
Решение:
D(y) = R
?′(х) = 3?2 − 9⋅2? = 3?2 − 18? = 3? (?−6).
ּּּ?′(х) = 0, 3? (?−6) = 0,
?1 = 0; ?2 = 6.
Ответ: при переходе через точку х=6 производная меняет знак с «-» на «+», значит, эта точка минимума.
Важно – это лишь пример, которым можно руководствоваться. Нет никаких гарантий, что во время экзамена вам попадется именно это задание.
Так как мы хотим изучить все типы 11 задания ЕГЭ по математике (профиль), переходим к следующему возможному варианту.
Поиск значения функции
Второй вариант, который может попасться на экзамене – это поиск максимального или минимального значения функции. В 11 задаче ЕГЭ по математике (профиль) такое задание встречается довольно часто.
Здесь алгоритм еще проще – этой единой инструкцией можно пользоваться при решении любых подобных задач.
- Сначала найдите производную;
- Приравняйте ее к нулю и найдите точки экстремума.
Затем нужно будет посчитать значение исходной функции в:
- Начале промежутка;
- Конце промежутка;
- В экстремумах, лежащих в [a; b], если есть.
Последний шаг – выбор нужного значения.
А теперь переходим к прототипу задания 11 ЕГЭ по математике (профиль). Еще раз напомним, это лишь пример, который поможет разобраться в тонкостях решения.
Задание: найдите наименьшее значение функции ? = ?? − 3? + 16 на отрезке [1;9].
Решение:
D(y) = [0; +∞]
y = x3/2 – 3х + 16
y’ (x) = 3/2×1/2 – 3 = 3/2√x – 3
y’ (x) = 0, 3/2√x – 3 = 0, √x = 3х2/3, √x = 2, х = 4
4 ∈ [1;9]
Ответ: в точке х = 4 заданная функция имеет минимум.
y (4) = 4√4 – 3 х 4 + 16 = 12.
Соответственно, ответ – 12.
Надеемся, с нашими подсказками вы сможете разобраться, как делать 11 задание в ЕГЭ по математике (профиль). Пусть оно и кажется очень сложным, нужно лишь правильно выстроить алгоритм решения – и тогда все получится!
Уважаемый посетитель!
Если у вас есть вопрос, предложение или жалоба, пожалуйста, заполните короткую форму и изложите суть обращения в текстовом поле ниже. Мы обязательно с ним ознакомимся и в 30-дневный срок ответим на указанный вами адрес электронной почты
Статус Абитуриент Студент Родитель Соискатель Сотрудник Другое
Филиал Абакан Актобе Алагир Алматы Алушта Анапа Ангарск Архангельск Армавир Асбест Астана Астрахань Атырау Баку Балхаш Барановичи Барнаул Белая Калитва Белгород Бельцы Берлин Бишкек Благовещенск Бобров Бобруйск Борисов Боровичи Бронницы Брянск Бузулук Чехов Челябинск Череповец Черкесск Дамаск Дербент Димитровград Дмитров Долгопрудный Домодедово Дубай Дубна Душанбе Екатеринбург Электросталь Елец Элиста Ереван Евпатория Гана Гомель Гродно Грозный Хабаровск Ханты-Мансийск Хива Худжанд Иркутск Истра Иваново Ижевск Калининград Карабулак Караганда Каракол Кашира Казань Кемерово Киев Кинешма Киров Кизляр Королев Кострома Красноармейск Краснодар Красногорск Красноярск Краснознаменск Курган Курск Кызыл Липецк Лобня Магадан Махачкала Майкоп Минеральные Воды Минск Могилев Москва Моздок Мозырь Мурманск Набережные Челны Нальчик Наро-Фоминск Нижневартовск Нижний Новгород Нижний Тагил Ногинск Норильск Новокузнецк Новосибирск Новоуральск Ноябрьск Обнинск Одинцово Омск Орехово-Зуево Орел Оренбург Ош Озёры Павлодар Пенза Пермь Петропавловск Подольск Полоцк Псков Пушкино Пятигорск Радужный Ростов-на-Дону Рязань Рыбинск Ржев Сальск Самара Самарканд Санкт-Петербург Саратов Сергиев Посад Серпухов Севастополь Северодвинск Щербинка Шымкент Слоним Смоленск Солигорск Солнечногорск Ставрополь Сургут Светлогорск Сыктывкар Сызрань Тамбов Ташкент Тбилиси Терек Тихорецк Тобольск Тольятти Томск Троицк Тула Тверь Тюмень Уфа Ухта Улан-Удэ Ульяновск Ургенч Усть-Каменогорск Вёшенская Видное Владимир Владивосток Волгодонск Волгоград Волжск Воркута Воронеж Якутск Ярославль Юдино Жлобин Жуковский Златоуст Зубова Поляна Звенигород
Тип обращения Вопрос Предложение Благодарность Жалоба
Тема обращения Поступление Трудоустройство Обучение Оплата Кадровый резерв Внеучебная деятельность Работа автоматических сервисов университета Другое
* Все поля обязательны для заполнения
Я даю согласие на обработку персональных данных, согласен на получение информационных рассылок от Университета «Синергия» и соглашаюсь c политикой конфиденциальности