Мы подошли к 14 заданию из ЕГЭ по информатике 2022. Оно связано с различными системами счисления. Что такое различные системы счисления, мы рассматривали в этой статье. Так же будет полезно посмотреть эту статью.
Переходим к первому тренировочному 14-ому заданию из ЕГЭ по информатике. Раньше это задание было под номером 16.
Задача (ЕГЭ по информатике, 2019, Москва)
Значение выражения 536 + 524 — 25 записали в системе счисления с основанием 5. Сколько цифр «4» содержится в этой записи?
Решение:
Первый способ. (С помощью Питона)
f = 5**36 + 5**24 - 25 s='' while f>0: s = s + str(f%5) f = f // 5 print(s.count('4'))
В переменную f записываем функцию. Две звёздочки подряд обозначают возведение в степень. Заводим строчку s, где и будет сформировано число в пятеричной системе.
Сам перевод числа f в пятеричную систему происходит в цикле WHILE.
Записываем остатки от деления на 5 в строку s. Делаем так же, как если бы переводили в ручную. И так же производим само целочисленное деление. Это мы тоже делаем, когда переводим на листке бумаги.
В строке s получается число в пятеричной системе, но в цифры в этой записи стоят в обратном порядке. Ведь, когда мы переводим в ручную, остатки должны записать задом наперёд.
Здесь и не важен порядок цифр, важно количество четвёрок!
С помощью функции count находим количество четвёрок в строке s.
В ответе напишем 22.
Второй способ. (Классический)
Сформулируем главное правило, на которое будем опираться при решении подобного типа задач.
Примеры:
54 (в десятичной системе) — это 100005 (в пятеричной системе)
72 (в десятичной системе) — это 1007 (в семеричной системе)
29 (в десятичной системе) — это 10000000002 (в двоичной системе)
Перепишем наше выражение, чтобы все числа были в виде степени представлены.
536 + 524 — 52
Посчитаем 536 + 524 в пятеричной системе столбиком, используя основное правило.
Здесь всё просто: ноль прибавить ноль, будет ноль. Единица плюс ноль, будет один.
Теперь от получившегося числа нужно отнять 52 (1005).
Первые два разряда посчитать легко. Ноль минус ноль, будет ноль.
Третий разряд: из нуля отнять единицу мы не можем, поэтому занимаем у более старших разрядов.
В более старших разрядах тоже нули, поэтому идём до единицы, у которой можно занять. Получается 22 четвёрки.
Вот как было бы, если бы считали в нашей родной десятичной системе счисления в аналогичной ситуации.
Здесь мы считаем в десятичной системе, поэтому получаются девятки. В нашей задаче считали в пятеричной системе, поэтому получаются четвёрки.
В ответе напишем 22 четвёрки.
Ответ: 22
Задача (ЕГЭ по информатике, 2020, Москва)
Значение выражения 168 × 420 — 45 — 64 записали в системе счисления с основанием 4. Сколько цифр «3» содержится в этой записи?
Решение:
Первый способ. (С помощью Питона)
f = 16**8 * 4**20 - 4**5 - 64 s='' while f>0: s = s + str(f%4) f = f // 4 print(s.count('3'))
Второй способ. (Классический)
Преобразуем наше выражение. Приведём всё к 4-ам.
168 × 420 — 45 — 64 =
= (42)8 × 420 — 45 — 43 =
= 416 × 420 — 45 — 43 =
= 436 — 45 — 43
Здесь не можем применить технику устного счёта, потому что стоят два минуса. Значит, будем решать с помощью столбиков.
Сначала посчитаем 436 — 45.
Теперь от этого числа нужно отнять 43 (10004)
Получается 32 тройки.
В последнем вычислении нет ничего сложно. В десятичной системе вы бы легко вычислили в аналогичной ситуации.
Ответ: 32
Задача (Тренировочная)
Укажите через запятую в порядке возрастания все десятичные натуральные числа, не превосходящие 17, запись которых в троичной системе счисления оканчивается на две одинаковые цифры.
Решение:
1) Переведём число 17 в троичную систему.
Получилось 1223.
2) Теперь выпишем все числа, которые не превосходят 1223 (Т.е. 1223 тоже подходит!), запись которых в троичной системе счисления оканчивается на две одинаковые цифры. В троичной системе могут применяться цифры 0, 1, 2.
1223
1223
1113
1003
223
113
Теперь переведём эти числа в десятичную систему.
1223 = 2 × 30 + 2 × 31 + 1 × 32 = 1710
1113 = 1 × 30 + 1 × 31 + 1 × 32 = 1310
1003 = 0 × 30 + 0 × 31 + 1 × 32 = 910
223 = 2 × 30 + 2 × 31 = 810
113 = 1 × 30 + 1 × 31 = 410
Ответ: 4, 8, 9, 13, 17
Ещё один интересный тип задания номер 14, который вполне может быть на реальном ЕГЭ по информатике 2022.
Задача (Уравнение)
Чему равно наименьшее основание позиционной системы счисления x, при котором 225x = 405y?
Ответ записать в виде целого числа.
Решение:
Переведём каждое из чисел 225x и 405y в десятичную систему счисления и приравняем, т.к. эти числа равны.
5 × x0 + 2 × x1 + 2 × x2 = 5 × y0 + 0 × y1 + 4 × y2
Любое число в нулевой степени — это 1. Значит, 5 × x0 = 5 × y0 = 5. Эти два выражения равны одному и тому же значению, следовательно, их можно убрать и слева, и справа.
2x + 2x2 = 4y2
x + x2 = 2y2
x(1 + x) = 2y2
Получили уравнение в целых числах. Слева умножение двух последовательных чисел. Нужно начать подбирать целые числа.
При y = 6 :
x (1 + x) = 2 × 62 = 72 ; Произведение двух последовательных чисел 8 * 9 = 72. Значит, x = 8.
Мы начали проверку с числа 6, потому что у нас в уравнении присутствуют цифра 5. Значит, система счисления может быть минимум с основанием 6.
Получается, что наименьшее значение x равно 8.
В подобных задач нужно знать, что числа обязательно найдутся, нужно их просто хорошо поискать.
Для качественной проработки 14 задания из ЕГЭ по информатике 2022 разберём ещё некоторые задачи.
Задача (Основание системы)
Запись числа 338 в системе счисления с основанием N содержит 3 цифры и оканчивается на 2. Чему равно максимально возможное основание системы счисления?
Решение:
В этой задаче применим формулу:
Примером для данной формулы можно взять два разряда в двоичной системе. Максимальное число в двоичной системе равно 112. А в десятичной системе это число равно 310. Т.е. 22 — 1.
338 число будет точно больше, чем двухзначное число с основанием N.
Получается неравенство:
338 > N2 — 1
N2 < 339
N — положительное целое число. Тогда:
N < √339 ≈ 18
N ≤ 18
Сказано, что число в системе с основанием N оканчивается на 2. Поэтому первый остаток должен быть равен 2!
Будем идти вниз от числа 18 и проверять, на что делится 336.
Число 336 должно делится на N.
Подошло число 16 (16 * 21 = 336!)
Ответ: 16
Продолжаем подготовку к 14 заданию из ЕГЭ по информатике 2022
Задача (На понимание)
Запись числа в девятеричной системе счисления заканчивается цифрой 4. Какой будет последняя цифра в записи этого числа в троичной системе счисления?
Решение:
Подберём такие числа в десятичной системе, которые в остатке при первом делении на 9 дадут 4!
Посмотрим, какой остаток будет при делении этого же числа на 3 при первом делении. Получается 1. Это и будет ответ.
Ответ: 1
Задача (Закрепление материала)
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 23 оканчивается на 2.
Решение:
Нужно перебрать все числа от 3 до 23 и определить, какие из них при делении числа 23 дадут остаток 2.
23 : 3 = 7 (ост. 2) +
23 : 4 = 5 (ост. 3) —
23 : 5 = 4 (ост. 3) —
23 : 6 = 3 (ост. 5) —
23 : 7 = 3 (ост. 2) +
23 : 8 = 2 (ост. 7) —
23 : 9 = 2 (ост. 5) —
23 : 10 = 2 (ост. 3) —
23 : 11 = 2 (ост. 1) —
23 : 12 = 1 (ост. 11) —
23 : 13 = 1 (ост. 10) —
23 : 14 = 1 (ост. 9) —
23 : 15 = 1 (ост. —
23 : 16 = 1 (ост. 7) —
23 : 17 = 1 (ост. 6) —
23 : 18 = 1 (ост. 5) —
23 : 19 = 1 (ост. 4) —
23 : 20 = 1 (ост. 3) —
23 : 21 = 1 (ост. 2) +
23 : 22 = 1 (ост. 1) —
23 : 23 = 1 (ост. 0) —
Подходят числа 3, 7, 21.
Здесь можно и написать программу:
for i in range(3, 24): if 23%i==2: print(i)
Ответ: 3, 7, 21
Задача (Добьём 14 задание из ЕГЭ по информатике 2022)
В некоторой системе счисления записи десятичных чисел 66 и 40 заканчиваются на 1. Определите основание системы счисления.
Решение:
Нужно найти такое число, чтобы числа 66 и 40 при делении на это число давали остаток 1.
Т.е. искомое число должно быть делителем чисел 65 (66-1) и 39 (40-1). У числа 39 не так много делителей: 1, 3, 13, 39
Видим, что число 65 делится на 13 (65 : 13 = 5). Поэтому искомое число равно 13.
Ответ: 13
Задача (Для чемпионов!)
В какой системе счисления выполняется равенство 12 · 13 = 222?
В ответе укажите число – основание системы счисления.
Решение:
Если бы мы находились в десятичной системе, то последней цифрой была бы 6 (2 * 3). Но у нас 2! Т.е. Система счисления меньше или равна 6, т.к. если бы система счисления была больше 6, то у нас была бы 6 последняя цифра.
Шестёрка не «поместилась» в младший разряд, от неё осталось только 2. Остальные 4 единицы ушли в более старший разряд. Если 4 единицы составляют единицу более старшего разряда, то значит, мы находимся в четверичной системе.
Ответ: 4
Задача (Новый тип, Статград окт 2022)
В выражении 1xBAD16 + 2CxFE16 x обозначает некоторую цифру из алфавита шестнадцатеричной системы счисления. Определите наименьшее значение x, при котором значение данного выражения кратно 15. Для найденного x вычислите частное от деления данного выражения на 15 и запишите его в ответе в десятичной системе счисления.
Решение:
Здесь дана сумма чисел, которые написаны в шестнадцатеричной системе счисления.
Мы будем перебирать каждую цифру из шестнадцатеричной системы (0-15) с помощью цикла. Нас будут интересовать те значения x, при котором сумма этих чисел будет делится на 15.
for x in range(0, 16): a=13*16**0 + 10*16**1 + 11*16**2 + x*16**3 + 1*16**4 b=14*16**0 + 15*16**1 + x*16**2 + 12*16**3 + 2*16**4 if (a+b)%15==0: print(x, (a+b)//15)
Чтобы проверить, делится ли данное выражение на 15, переводим оба слагаемых в нашу родную десятичную систему. Переводим стандартным образом, об этом можно прочитать здесь.
В задаче нужно написать для наименьшего найденного значения x результат от деления данной суммы на 15.
Получается 18341
Ответ: 18341
Задача(Новый тип, закрепление)
(Богданов) Операнды арифметического выражения записаны в системе счисления с основанием 17:
9759x17 + 3×10817
В записи чисел переменной x обозначена неизвестная цифра из алфавита 17-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратного 11. Для найденного значения x вычислите частное от деления значения арифметического выражения на 11 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
Решение:
Решим задание с помощью предыдущего шаблона на языке Python.
for x in range(0, 17): a=x*17**0 + 9*17**1 + 5*17**2 + 7*17**3 + 9*17**4 b=8*17**0 + 0*17**1 + 1*17**2 + x*17**3 + 3*17**4 if (a+b)%11==0: print(x, (a+b)//11)
Ответ: 95306
Задача (Новый тип, две переменные)
(В. Шубинкин) Числа M и N записаны в системах счисления с основаниями 15 и 13 соответственно.
M = 2y23x515, N = 67x9y13
В записи чисел переменными x и y обозначены допустимые в данных системах счисления неизвестные цифры. Определите наименьшее значение натурального числа A, при котором существуют такие x, y, что M + A кратно N.
Решение:
Принцип решения данной задачи похож на решение 15 задания из ЕГЭ по информатике.
for A in range(1, 5000): for x in range(0, 13): for y in range(0, 13): M=5*15**0 + x*15**1 + 3*15**2 + 2*15**3 + y*15**4 + 2*15**5 N=y*13**0 + 9*13**1 + x*13**2 + 7*13**3 + 6*13**4 if (M+A)%N==0: print(A)
Нужно найти A, значит, начинаем перебирать A. Идём от 1, т.к. речь идёт о натуральных числах. Перебираем x и y. Они могут принимать значения из алфавита в 13-ой системе. Берём меньшую, т.к. эти переменные и в первом числе, и во втором одинаковые.
Если выполняется условие задачи, то нам интересно такое A при котором это произошло.
В этой задаче A получается достаточно большим, поэтому перебираем эту переменную до 5000.
Ответ: 1535
На этом всё! Вы прошли чемпионскую тренировку по подготовке 14 задания из ЕГЭ по информатике 2022. Успехов на экзамене!
«В переменную f записываем функцию». В переменную f мы записываем не функцию, а выражение
Господа, вот это я понимаю, по-настоящему чемпионская подготовка. Тут же и язык свой придумали, и решение на нём сделали. Скажите, зачем над змеёй то издеваться? Очень уж режет слух неправильное произношение. «Пайтон» — вот как должно быть. Я бы промолчал, увидев это раз, но видя подобное насилие над словом постоянно — молчать более не могу
Для ласт задачи модно сделать код куда проще и короче
for a in range(1, 10000):
for x in ‘0123456789ABC’:
for y in ‘0123456789ABC’:
M = int(f’2{y}23{x}5′, 15)
N = int(f’67{x}9{y}’, 13)
if (M + a) % N == 0:
print(a)
break
Первое задание, первое решение, очепятка: «В ответе напишем 4»,
вместо: «В ответе напишем 22».
И спасибо Вам за этот сайт!)
На уроке рассматривается 14 задание, решение и объяснение ЕГЭ по информатике
Содержание:
- Объяснение заданий 14 ЕГЭ по информатике
- Перевод числа из любой системы счисления в десятичную
- Особенности при переводах в разные системы счисления
- Решение заданий 14 ЕГЭ по информатике
- Определите наибольшее/наименьшее значение x, y
- Сколько цифр или сумма цифр
- Найти основание системы счисления и уравнения
14-е задание: «Операции в системах счисления»
Уровень сложности
— повышенный,
Требуется использование специализированного программного обеспечения
— нет,
Максимальный балл
— 1,
Примерное время выполнения
— 5 минут.
Проверяемые элементы содержания: Знание позиционных систем счисления
До ЕГЭ 2021 года — это было задание № 16 ЕГЭ
Типичные ошибки и рекомендации по их предотвращению:
«Основные ошибки связаны с невнимательностью при выполнении арифметических действий
в недесятичных системах счисления. Например, вычитания единицы в ситуации типа: 10100002 – 1»
ФГБНУ «Федеральный институт педагогических измерений»
С основами темы можно ознакомиться в теории к заданию 1.
Перевод числа из любой системы счисления в десятичную
Чтобы перевести, например, 10045N
, из системы счисления с основанием N
в десятичную систему, нужно умножить значение каждой цифры на N
в степени, равной разряду этой цифры:
Особенности при переводах в разные системы счисления
Некоторые правила, которые нужно знать, при работе с системами счисления:
- последняя цифра (крайняя справа) в записи числа в системе счисления с основанием
N
– представляет собой остаток от деления этого числа наN
:
710 = 1112 7/2 = остаток 1
N
– это остаток от деления этого числа на N²
, и так далее:710 = 1112 112=310 7/22 = остаток 310 (112)
10N
записывается как единица и N
нулей:
2N
в двоичной системе записывается как единица и N
нулей:3N
записывается в троичной системе в виде единицы и N
нулей:a
; общее правило:10N-1
записывается как N
девяток:2N-1
в двоичной системе записывается как N
единиц:3N-1
записывается в троичной системе как N
двоек:aN-1
в системе счисления с основанием a
записывается как N
старших цифр этой системы, то есть, цифр (a-1)
10N-10M
= 10M * (10N-M – 1)
записывается как N-M
девяток, за которыми стоят M
нулей:2N – 2K
при K < N
в двоичной системе записывается как N – K
единиц и K
нулей:
Решение заданий 14 ЕГЭ по информатике
Плейлист видеоразборов задания на YouTube:
Задание демонстрационного варианта 2022 года ФИПИ
Определите наибольшее/наименьшее значение x, y
14_14:
Операнды арифметического выражения записаны в системе счисления с основанием 15.
82x19₁₅ – 6x073₁₅
В записи чисел переменной x
обозначена неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение x
, при котором значение данного арифметического выражения кратно 11. Для найденного значения x
вычислите частное от деления значения арифметического выражения на 11 и укажите его в ответе в десятичной системе счисления. Основание системы счисления в ответе указывать не нужно.
✍ Решение:
-
✎ Решение с использованием программирования:
PascalABC.net:
|
||
Python: | ||
С++: |
Ответ: 7806
Сколько цифр или сумма цифр
14_12:
Значение арифметического выражения
43∙7103 – 21∙757 + 98
записали в системе счисления с основанием 7.
Найдите сумму цифр получившегося числа и запишите её в ответе в десятичной системе счисления.
✍Решение:
✎ Решение с использованием программирования:
PascalABC.net, Решение 1:
|
||
PascalABC.net, Решение 2:
|
||
Python:
|
||
С++: |
Результат: 276
14_1:
Значение арифметического выражения:
21024 + 464 — 64
записали в системе счисления с основанием 2.
Сколько цифр «1» содержится в этой записи?
Типовые задания для тренировки
✍Решение:
✎ Решение с использованием программирования:
PascalABC.net, Решение 1:
|
||
PascalABC.net, Решение 2:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- Существует правило:
- Чтобы воспользоваться этим правилом, преобразуем общее выражение к степеням двойки:
2N = 10..02(1
единица и N
нулей)
21024 + (22)64 - 26 = 21024 + 2128 - 26
10...0 (1024 нуля) + 10...0 (128 нулей) - 10...0 (6 нулей)
10....00000 - 1024 нуля + 10..0 - 128 нулей _________________________ 10....10..0
10....00000 - 1024 нуля + 10..0 - 128 нулей _________________________ 10....10..0 - запомним единицу
2N — 2K = 1…1 (N - K
единиц)0…0(K
нулей)
10..0000000 - 128 нулей - 1000000 _________________________ 11..1000000 - 122 единицы и 6 нулей
122 + 1 = 123 единицы
Результат: 123
Также можно посмотреть видео решения 14 задания ЕГЭ по информатике (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_3: 14 задание. Демоверсия ЕГЭ 2018 информатика:
Значение арифметического выражения:
4910 + 730 – 49
записали в системе счисления с основанием 7.
Сколько цифр «6» содержится в этой записи?
Типовые задания для тренировки
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net, решение 1:
|
||
PascalABC.net, решение 2:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- Приведем все числа к степеням 7:
720 + 730 - 72
730 + 720 - 72
1. an = 10..0a n 2. an - am = (a-1)..(a-1)0..0a n-m m
730 = 10..0 30
0 + (20 - 2) = 18
Результат: 18
Подробное решение 14 задания демоверсии ЕГЭ смотрите на видео (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_2:
Значение арифметического выражения:
4500 + 3*42500 + 16500 — 1024
записали в системе счисления с основанием 4.
Сколько цифр «3» содержится в этой записи?
Типовые задания для тренировки
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net:
|
||
Python:
|
||
С++: |
Результат: 496
Подробное решение данного 14 задания ЕГЭ по информатике можно посмотреть на видео (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_5:
Значение арифметического выражения: 81024 + 832 – 65 – записали в системе счисления с основанием 8. Сколько цифр «7» содержится в этой записи?
Типовые задания для тренировки
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- Приведем все числа к степеням восьмерки:
65 = 64 + 1 = 82 + 80;
81024 + 832 - (82 + 80); 81024 + 832 - 82 - 80
1. an = 10..0a n 2. an - am = (a-1)..(a-1)0..0a n-m m
81024 = 10..0 1024
3.-2n = -2n+1 + 2n
! Формула предназначена для чисел в двоичной системе счисления, но для подсчета цифр "7" в 8-й (или "6" в 7-й и т.п.) ее можно использовать (для поиска единиц или нулей она не подходит!!!)
-82 = -83 + 82
! обратите внимание, что тождество неверно, но
при поиске количества "7" этой формулой можно воспользоваться
(для поиска единиц или нулей она не подходит!)
Получаем:
81024 + 832 - 83 + 82- 80
0 + (32 - 3) + (2 - 0) = 31
Результат: 31
14_13:
Сколько значащих нулей в двоичной записи числа 4350 + 8340 – 2320 – 12
?
✍ Решение:
✎ Решение с использованием программирования:
PascalABC.net, решение 1:
|
||
PascalABC.net, решение 2:
|
||
Python:
|
||
С++: |
✎ Решение теоретическое:
- По возможности приведем каждое слагаемое к степеням 2. Получим:
4350 + 8340 – 2320 – 12
(22)350 + (23)340 - 2320 - 3*22 = (22)350 + (23)340 - 2320 - 12 = 2700 + 21020 - 2320 - (23 + 22)
21020 + 2700 - 2320 - 23 - 22
-2n = -2n+1+2n
и преобразуем выражение:21020 + 2700 - 2321+ 2320- 24 + 23 - 22
21020 -> один не ноль 2700 - 2321 -> 379 не нулей 2320- 24 -> 316 не нулей 23 - 22 -> один не ноль Итого: 1+ 379+316 +1 = 697
1021 - 697 = 324
Результат: 324
Найти основание системы счисления и уравнения
14_7:
Укажите, сколько всего раз встречается цифра 2 в записи чисел 13, 14, 15, …, 23 в системе счисления с основанием 3.
Типовые задания для тренировки
✍ Решение:
- Для начала достаточно перевести первое и последнее число предложенного интервала в троичную систему счисления. Сделаем это:
1. 13 | 3 12 4 | 3 1 3 1 1 1310 = 1113 2. 23 | 3 21 7 | 3 2 6 2 1 2310 = 2123
111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212
111, 112, 120, 121, 122, 200, 201, 202, 210, 211, 212
Ответ: 13
✍ Решение:
- Разделим уравнение на три части и вычислим каждую часть отдельно (выделим части разным цветом):
204N+1 = 204N + 2616 1 2 3
1.
210
204N+1
По формуле получаем:
2*(N+1)2 + 0*(N+1)1 + 4*(N+1)0 =
= 2*(N2 + 2N + 1) + 0 + 4 = 2N2 + 4N + 6
2.
210
204N
По формуле получаем:
2*N2 + 0*N1 + 4*N0 =
= 2N2 + 4
3. 2616 = 3810
2N2 + 4N + 6 = 2N2 + 4 + 38; 4N = 36; N = 9
Результат: 9
✍ Решение:
- Вместо обозначения искомой системы счисления введем неизвестное x:
144x + 24x = 201x
144 + 24 = 201 1*x2 + 4*x1 + 4*x0 + 2*x1 + 4*x0 = 2*x2 + 0*x1 + 1*x0
x2 - 6x - 7 = 0
D = b2 - 4ac = 36 - 4*1*(-7) = 64
x = (-b ± √D)/2a
x1 = (6 + 8)/2 = 7
x2 = (6 - 8)/2 - не подходит
x = 7
Ответ: 7
14_9:
В некоторой системе счисления записи десятичных чисел 68 и 94 заканчиваются на 3. Определите основание системы счисления.
Типовые задания для тренировки
✍ Решение:
- Вспомним правило:
- Примем искомую систему счисления за x. Тогда, исходя из приведенного правила имеем:
Последняя цифра записи числа в системе счисления с основанием X — это остаток от деления этого числа на X
94 / x = некоторое число и остаток 3 и 68 / x = некоторое число и остаток 3
91/x 65/x
91 - 65 = 26 65 - 26 = 39 39 - 26 = 13 26 - 13 = 13
Ответ: 13
14_10:
Некоторое число X из десятичной системы счисления перевели в системы счисления с основаниями 16, 8. Часть символов при записи утеряна. Позиции утерянных символов обозначены *
:
X = *516 = *0*8
Сколько чисел соответствуют условию задачи?
Типовые задания для тренировки
✍ Решение:
- Данные числа с утерянными символами переведем из 16-й и из 8-й системы счисления в двоичную. Перевод будем делать триадами и тетрадами, неизвестные позиции оставим пустыми:
1. *516 * | 5 16 * * * * | 0 1 0 1 2 2. *0*8 * | 0 | * 8 * * *|0 0 0|* * * 2
* * 0 0 0 1 0 1
1. 01000101 2. 10000101 3. 11000101
Ответ: 3
Предлагаем посмотреть видео решения данного 14 задания ЕГЭ (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_4:
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 75 оканчивается на 13.
Типовые задания для тренировки
✍ Решение:
- Так как 75 должно оканчиваться на 13, то имеем два общих случая:
1. 7510 = 13N 2. 7510 = ...13N (число оканчивается на 13)
1 случай:
75|N N|1 отсюда имеем => 75 - N = 3; т.е. N = 72 3
2 случай:
75|N 72|y отсюда имеем => 75 = Ny + 3, где N - целое, неотриц. 3
75|N 72| y |N => y = Nz + 1, где z - целое, неотриц. 3 y-1|z 1
75 = Ny + 3 y = Nz + 1
75 = N (Nz + 1) + 3; 75 = N2z + N + 3; 75 = N2z + N
z = (72 - N)/N2
72 - 5 / 52 = 67 / 25 не делится, - не подходит!
75 | 4
72 | 18| 4
3 16| 2
2 => не подходит! должна быть единица
75 | 6
72 | 12| 6
3 12| 1
0 => не подходит! должна быть единица
75 | 7
70
5 => не подходит! должна быть 3
75 | 8
72 | 9| 8
3 8| 1
1 => подходит!
Результат: 8,72
Видеоразбор решения (аналитический способ):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
14_11:
Выражение 25*325 записано в троичной системе счисления. Определите, сколько в этой записи цифр 0, 1 и 2.
✍ Решение:
-
Рассмотрим каждый сомножитель отдельно.
- Первый сомножитель:
25 = 32 Переведем в троичную систему счисления (делением на 3, переписываем остатки). Результат: 3210 = 10123
325 = 10..0{25 нулей}3
1000 x 1012 = ---- 2000 1000 0000 1000 ------- 1012000
Ответ: «0»=26, «1»=2, «2»=1
Смотрите видео разбора на нашем канале (аналитическое решение):
📹 YouTube здесь
📹 Видеорешение на RuTube здесь
ЕГЭ по информатике 2022 — Задание 14 (Чемпионская подготовка)
Мы подошли к 14 заданию из ЕГЭ по информатике 2022. Оно связано с различными системами счисления. Что такое различные системы счисления, мы рассматривали в этой статье. Так же будет полезно посмотреть эту статью.
Переходим к первому тренировочному 14-ому заданию из ЕГЭ по информатике. Раньше это задание было под номером 16.
Задача (ЕГЭ по информатике, 2019, Москва)
Значение выражения 5 36 + 5 24 — 25 записали в системе счисления с основанием 5. Сколько цифр «4» содержится в этой записи?
Первый способ. (С помощью Питона)
В переменную f записываем функцию. Две звёздочки подряд обозначают возведение в степень. Заводим строчку s, где и будет сформировано число в пятеричной системе.
Сам перевод числа f в пятеричную систему происходит в цикле WHILE.
Записываем остатки от деления на 5 в строку s. Делаем так же, как если бы переводили в ручную. И так же производим само целочисленное деление. Это мы тоже делаем, когда переводим на листке бумаги.
В строке s получается число в пятеричной системе, но в цифры в этой записи стоят в обратном порядке. Ведь, когда мы переводим в ручную, остатки должны записать задом наперёд.
Здесь и не важен порядок цифр, важно количество четвёрок!
С помощью функции count находим количество четвёрок в строке s.
В ответе напишем 4.
Второй способ. (Классический)
Сформулируем главное правило, на которое будем опираться при решении подобного типа задач.
Примеры:
5 4 (в десятичной системе) — это 100005 (в пятеричной системе)
7 2 (в десятичной системе) — это 1007 (в семеричной системе)
2 9 (в десятичной системе) — это 10000000002 (в двоичной системе)
Перепишем наше выражение, чтобы все числа были в виде степени представлены.
5 36 + 5 24 — 5 2
Посчитаем 5 36 + 5 24 в пятеричной системе столбиком, используя основное правило.
Здесь всё просто: ноль прибавить ноль, будет ноль. Единица плюс ноль, будет один.
Теперь от получившегося числа нужно отнять 5 2 (1005).
Первые два разряда посчитать легко. Ноль минус ноль, будет ноль.
Третий разряд: из нуля отнять единицу мы не можем, поэтому занимаем у более старших разрядов.
В более старших разрядах тоже нули, поэтому идём до единицы, у которой можно занять. Получается 22 четвёрки.
Вот как было бы, если бы считали в нашей родной десятичной системе счисления в аналогичной ситуации.
Здесь мы считаем в десятичной системе, поэтому получаются девятки. В нашей задаче считали в пятеричной системе, поэтому получаются четвёрки.
В ответе напишем 22 четвёрки.
Задача (ЕГЭ по информатике, 2020, Москва)
Значение выражения 16 8 × 4 20 — 4 5 — 64 записали в системе счисления с основанием 4. Сколько цифр «3» содержится в этой записи?
Первый способ. (С помощью Питона)
Второй способ. (Классический)
Преобразуем наше выражение. Приведём всё к 4-ам.
16 8 × 4 20 — 4 5 — 64 =
= (4 2 ) 8 × 4 20 — 4 5 — 4 3 =
= 4 16 × 4 20 — 4 5 — 4 3 =
= 4 36 — 4 5 — 4 3
Здесь не можем применить технику устного счёта, потому что стоят два минуса. Значит, будем решать с помощью столбиков.
Сначала посчитаем 4 36 — 4 5 .
Теперь от этого числа нужно отнять 4 3 (10004)
Получается 32 тройки.
В последнем вычислении нет ничего сложно. В десятичной системе вы бы легко вычислили в аналогичной ситуации.
Укажите через запятую в порядке возрастания все десятичные натуральные числа, не превосходящие 17, запись которых в троичной системе счисления оканчивается на две одинаковые цифры.
1) Переведём число 17 в троичную систему.
2) Теперь выпишем все числа, которые не превосходят 1223 (Т.е. 1223 тоже подходит!), запись которых в троичной системе счисления оканчивается на две одинаковые цифры. В троичной системе могут применяться цифры 0, 1, 2.
Теперь переведём эти числа в десятичную систему.
Ещё один интересный тип задания номер 14, который вполне может быть на реальном ЕГЭ по информатике 2022.
Чему равно наименьшее основание позиционной системы счисления x, при котором 225x = 405y? Ответ записать в виде целого числа.
Переведём каждое из чисел 225x и 405y в десятичную систему счисления и приравняем, т.к. эти числа равны.
5 × x 0 + 2 × x 1 + 2 × x 2 = 5 × y 0 + 0 × y 1 + 4 × y 2
Любое число в нулевой степени — это 1. Значит, 5 × x 0 = 5 × y 0 = 5. Эти два выражения равны одному и тому же значению, следовательно, их можно убрать и слева, и справа.
2x + 2x 2 = 4y 2
x + x 2 = 2y 2
x(1 + x) = 2y 2
Получили уравнение в целых числах. Слева умножение двух последовательных чисел. Нужно начать подбирать целые числа.
x (1 + x) = 2 × 6 2 = 72 ; Произведение двух последовательных чисел 8 * 9 = 72. Значит, x = 8.
Мы начали проверку с числа 6, потому что у нас в уравнении присутствуют цифра 5. Значит, система счисления может быть минимум с основанием 6.
Получается, что наименьшее значение x равно 8.
В подобных задач нужно знать, что числа обязательно найдутся, нужно их просто хорошо поискать.
Для качественной проработки 14 задания из ЕГЭ по информатике 2022 разберём ещё некоторые задачи.
Запись числа 338 в системе счисления с основанием N содержит 3 цифры и оканчивается на 2. Чему равно максимально возможное основание системы счисления?
В этой задаче применим формулу:
Примером для данной формулы можно взять два разряда в двоичной системе. Максимальное число в двоичной системе равно 112. А в десятичной системе это число равно 310. Т.е. 2 2 — 1.
338 число будет точно больше, чем двухзначное число с основанием N.
338 > N 2 — 1 N 2
N — положительное целое число. Тогда:
Сказано, что число в системе с основанием N оканчивается на 2. Поэтому первый остаток должен быть равен 2!
Будем идти вниз от числа 18 и проверять, на что делится 336.
Число 336 должно делится на N.
Подошло число 16 (16 * 21 = 336!)
Продолжаем подготовку к 14 заданию из ЕГЭ по информатике 2022
Запись числа в девятеричной системе счисления заканчивается цифрой 4. Какой будет последняя цифра в записи этого числа в троичной системе счисления?
Подберём такие числа в десятичной системе, которые в остатке при первом делении на 9 дадут 4!
Посмотрим, какой остаток будет при делении этого же числа на 3 при первом делении. Получается 1. Это и будет ответ.
Ответ: 1
Укажите через запятую в порядке возрастания все основания систем счисления, в которых запись числа 23 оканчивается на 2.
Нужно перебрать все числа от 3 до 23 и определить, какие из них при делении числа 23 дадут остаток 2.
23 : 3 = 7 (ост. 2) +
23 : 4 = 5 (ост. 3) —
23 : 5 = 4 (ост. 3) —
23 : 6 = 3 (ост. 5) —
23 : 7 = 3 (ост. 2) +
23 : 8 = 2 (ост. 7) —
23 : 9 = 2 (ост. 5) —
23 : 10 = 2 (ост. 3) —
23 : 11 = 2 (ост. 1) —
23 : 12 = 1 (ост. 11) —
23 : 13 = 1 (ост. 10) —
23 : 14 = 1 (ост. 9) —
23 : 15 = 1 (ост. —
23 : 16 = 1 (ост. 7) —
23 : 17 = 1 (ост. 6) —
23 : 18 = 1 (ост. 5) —
23 : 19 = 1 (ост. 4) —
23 : 20 = 1 (ост. 3) —
23 : 21 = 1 (ост. 2) +
23 : 22 = 1 (ост. 1) —
23 : 23 = 1 (ост. 0) —
Подходят числа 3, 7, 21.
Здесь можно и написать программу:
Задача (Добьём 14 задание из ЕГЭ по информатике 2022)
В некоторой системе счисления записи десятичных чисел 66 и 40 заканчиваются на 1. Определите основание системы счисления.
Нужно найти такое число, чтобы числа 66 и 40 при делении на это число давали остаток 1.
Т.е. искомое число должно быть делителем чисел 65 (66-1) и 39 (40-1). У числа 39 не так много делителей: 1, 3, 13, 39
Видим, что число 65 делится на 13 (65 : 13 = 5). Поэтому искомое число равно 13.
В какой системе счисления выполняется равенство 12 · 13 = 222?
В ответе укажите число – основание системы счисления.
Если бы мы находились в десятичной системе, то последней цифрой была бы 6 (2 * 3). Но у нас 2! Т.е. Система счисления меньше или равна 6, т.к. если бы система счисления была больше 6, то у нас была бы 6 последняя цифра.
Шестёрка не «поместилась» в младший разряд, от неё осталось только 2. Остальные 4 единицы ушли в более старший разряд. Если 4 единицы составляют единицу более старшего разряда, то значит, мы находимся в четверичной системе.
На этом всё! Вы прошли чемпионскую тренировку по подготовке 14 задания из ЕГЭ по информатике 2022. Успехов на экзамене!
Информатика егэ 14 задание уравнение
В системе счисления с некоторым основанием десятичное число 18 записывается в виде 30. Укажите это основание.
Составим уравнение: где n — основание этой системы счисления. Исходя из уравнения,
Ответ запишите в троичной системе (основание системы счисления в ответе писать не нужно).
Основание системы счисления равно 610 = 203.
Корни квадратного уравнения: 8 и −10. Следовательно, основание системы счисления равно 8.
Переведём все числа в десятичную систему счисления:
Составим новое уравнение и решим уже его:
Чему равно наименьшее основание позиционной системы счисления x, при котором 225x = 405y?
Ответ записать в виде целого числа.
Поскольку в левой и в правой частях есть цифра 5, оба основания больше 5, то есть перебор имеет смысл начинать с
Для каждого x вычисляем значение и решаем уравнение
, причем нас интересуют только натуральные
Для и
нужных решений нет, а для
получаем
так что
Ответ:
Задание 14 ЕГЭ-2019 по информатике: теория и практика
В предстоящем ЕГЭ не появилось никаких изменений по сравнению с прошлым годом.
Возможно, вам также будут интересны демоверсии ЕГЭ по математике и физике.
О нововведениях в экзаменационных вариантах по другим предметам читайте в наших новостях.
Демоверсия КИМ ЕГЭ-2019 по информатике не претерпела никаких изменений по своей структуре по сравнению с 2018 годом. Это значимо упрощает работу педагога и, конечно, уже выстроенный (хочется на это рассчитывать) план подготовки к экзамену обучающегося.
Мы рассмотрим решение предлагаемого проекта (на момент написания статьи пока еще ПРОЕКТА) КИМ ЕГЭ по информатике.
Часть 1
Ответами к заданиям 1–23 являются число, последовательность букв или цифр, которые следует записать в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки, без пробелов, запятых и других дополнительных символов. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами.
Задание 14
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды
преобразует строку 05111150 в строку 0527150.
Если в строке нет вхождений цепочки v, то выполнение команды «заменить»(v, w) не меняет эту строку.
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
выполняется, пока условие истинно.
выполняется команда1 (если условие истинно).
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 82 идущих подряд цифр 1? В ответе запишите полученную строку.
ПОКА нашлось (11111) ИЛИ нашлось (888)
ЕСЛИ нашлось (11111)
ТО заменить (11111, 88)
ЕСЛИ нашлось (888)
ТО заменить (888,
Решение
82 единицы условно можно представить как 16 групп по 5 единиц, а также одну группу из двух единиц. Первый вызов оператора условия дает нам 16 групп пар из восьмерок – это 32 восьмерки или 10 групп по три восьмерки, а также еще одна свободная пара восьмерок. Очевидно, что последние две единички так и останутся не затронутыми исполнителем. А 12 оставшихся восьмерок, сгруппированные по три, – это уже 4 восьмерки. Еще одна итерация – остается 2 восьмерки и 2 единички.
Ответ: 8811.
Заместитель генерального директора по ИКТ АНОО «Дом знаний», преподаватель по программированию Яндекс.Лицея (ДГУНХ, Махачкала), учитель высшей категории, финалист Всероссийского конкурса «Учитель года России 2010»
источники:
http://inf-ege.sdamgia.ru/test?theme=248
http://rosuchebnik.ru/material/razbor-zadaniya-14-ege-2019-po-informatike-i-ikt/
ЕГЭ информатика 14 задание разбор, теория, как решать.
Позиционные системы счисления. Кодирование чисел. Системы счисления, (П) — 1 балл
Е14.55 неизвестная цифра из алфавита 15-ричной системы счисления
Операнды арифметического выражения записаны в системе счисления с основанием 15. 123×515 + 1×23315 В записи чисел переменной x обозначена неизвестная цифра из алфавита 15-ричной системы счисления. Определите наименьшее значение x, при котором значение данного арифметического выражения кратно 14. Для найденного значения x вычислите частное от деления значения арифметического выражения на 14 и укажите его в …
Читать далее
Е14.54 Сколько чётных цифр встречается в этой записи
Значение выражения 5 ∙ 7298 + 7 ∙ 8112 + 316 — 171 записали в системе счисления с основанием 9 без незначащих нулей. Сколько чётных цифр встречается в этой записи? Ответ: СтатГрад Вариант ИН2110402 30.03.2022 – задание №14
Читать далее
Е14.53 Значение арифметического выражения 6*512^180+7*64^181+3*8^184+5*8^125-65 записали
Значение арифметического выражения 6*512180+7*64181+3*8184+5*8125-65 записали в системе счисления с основанием 64. Сколько значащих нулей содержится в этой записи? Ответ: Апробация ЕГЭ по информатике 19 февраля 2022 – задание №14 Тренировочный экзамен по информатике и ИКТ (КЕГЭ) в компьютерной форме
Читать далее
Е14.52 Какая цифра чаще всего встречается в этой записи?
Значение выражения 5 ∙ 3438 + 4 ∙ 4912 + 714 – 98 записали в системе счисления с основанием 7 без незначащих нулей. Какая цифра чаще всего встречается в этой записи? Ответ: СтатГрад Вариант ИН2110301 08.02.2022 – задание №14
Читать далее
Е14.51 N^25 — 2N^13 + 10 записали в системе счисления с основанием N
Значение арифметического выражения: N25 — 2N13 + 10 записали в системе счисления с основанием N. Определите основание системы счисления, если известно, что сумма разрядов в числе, представленном в этой системе счисления, равна 75? Ответ: «Некрыловские варианты» от Евгения Джобса — Вариант 6
Читать далее
Е14.50 125^200 — 5^x + 74 содержит ровно 100 цифр «4» в пятеричной записи числа
При каком наименьшем введённом значении x запись выражения 125200 — 5x + 74 содержит ровно 100 цифр «4» в пятеричной записи числа? «Некрыловские варианты» от Евгения Джобса — Вариант 5
Читать далее
Е14.49 Сколько разных цифр встречается в этой записи?
Значение выражения 436 + 3 ∙ 420 + 415 + 2 ∙ 47 + 49 записали в системе счисления с основанием 16. Сколько разных цифр встречается в этой записи? СтатГрад Вариант ИН2110101 27.10.2021– задание №14
Читать далее
Е14.48 3*4^38+2*4^23+4^20+3*4^5+2*4^4+1 записали в системе счисления с основанием 16
Значение арифметического выражения 3*438+2*423+420+3*45+2*44+1 записали в системе счисления с основанием 16. Сколько значащих нулей содержится в этой записи? Источник: Демонстрационный вариант ЕГЭ по информатике 2022 г. задания №14
Читать далее
Е14.47 4^14+64^16–81 записали в системе счисления с основанием 4
Значение арифметического выражения: 414 + 6416 — 81 записали в системе счисления с основанием 4. Сколько цифр «0» содержится в этой записи? Ответы: Источник: «05.04.2021 ЕГЭ 100БАЛЛОВ, Иосиф Дзеранов»
Читать далее
Е14.46 Значение арифметического выражения: 97 + 321 – 8 записали
Значение арифметического выражения: 97 + 321 – 8 записали в системе счисления с основанием 3. Найдите сумму цифр в этой записи. Ответ запишите в десятичной системе. Ответ: Тренировочный вариант от 16.11.2020 «Евгений Джобс»
Читать далее
Автор материалов — Лада Борисовна Есакова.
В этой задаче используется, в основном, описание алгоритмов на псевдокоде (условном алгоритмическом языке, включающем в себя и элементы языка программирования, и элементы обычного естественного языка).
Основные конструкции псевдокода описаны перед текстом задачи.
Исполнитель чертежник
Пример 1.
Исполнитель Чертёжник перемещается на координатной плоскости, оставляя след в виде линии. Чертёжник может выполнять команду сместиться на (a, b), где a, b – целые числа. Эта команда перемещает Чертёжника из точки с координатами (x, y) в точку с координатами (x + a; y + b).
Например, если Чертёжник находится в точке с координатами (4, 2), то команда сместиться на (2, -3) переместит Чертёжника в точку (6, -1).
Цикл
ПОВТОРИ число РАЗ
последовательность команд
КОНЕЦ ПОВТОРИ
означает, что последовательность команд будет выполнена указанное число раз (число должно быть натуральным).
Чертёжнику был дан для исполнения следующий алгоритм (буквами n, a, b обозначены неизвестные числа, n>1):
НАЧАЛО
сместиться на (60, 100)
ПОВТОРИ n РАЗ
сместиться на (a, b)
сместиться на (33, 44)
КОНЕЦ ПОВТОРИ
сместиться на (13, 200)
сместиться на (-1, 60)
КОНЕЦ
Укажите наибольшее возможное значение числа n, для которого найдутся такие значения чисел a и b, что после выполнения программы Чертёжник возвратится в исходную точку.
Решение:
В результате выполнения алгоритма Чертежник переместится
по оси х на:
60 + n*a + n*33 + 13 – 1
по оси y на:
100 + n*b + n*44 + 200 + 60
Известно, что в результате перемещения Чертежник вернулся в исходную точку, т.е. перемещение по оси х равно нулю, и перемещение по оси y равно нулю:
60 + n*a + n*33 + 13 – 1 = 0
100 + n*b + n*44 + 200 + 60 = 0
Т.е.
n*(a + 33) = -72
n*(b + 44) = -360
Наибольшее n – это наибольший общий делитель чисел -72 и -360. Это число 72.
Ответ: 72
Исполнитель робот
Пример 2.
Система команд исполнителя РОБОТ, «живущего» в прямоугольном лабиринте на клетчатой плоскости:
При выполнении любой из этих команд РОБОТ перемещается на одну клетку соответственно (по отношению к наблюдателю): вверх ↑, вниз ↓, влево ←, вправо →.
Четыре команды проверяют истинность условия отсутствия стены у каждой стороны той клетки, где находится РОБОТ (также по отношению к наблюдателю):
сверху |
снизу |
слева |
справа |
Цикл
ПОКА < условие >
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ < условие >
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно)
Если РОБОТ начнёт движение в сторону находящейся рядом с ним стены, то он разрушится и программа прервётся.
Сколько клеток лабиринта соответствуют требованию, что, начав движение в ней и выполнив предложенную программу, РОБОТ уцелеет и остановится в закрашенной клетке (клетка F6)?
НАЧАЛО
ПОКА снизу свободно ИЛИ справа свободно ПОКА справа свободно
вправо
КОНЕЦ ПОКА
вниз
КОНЕЦ ПОКА
КОНЕЦ
1) 22
2) 19
3) 15
4) 12
Решение:
В данной программе РОБОТ сначала проверяет, свободна ли клетка справа или снизу от него. Если это так, то РОБОТ переходит к первому действию внутри цикла. В этом цикле пока у правой стороны клетки, в которой находится РОБОТ, нет стены, он продолжает двигаться вправо. Как только это условие перестанет выполняться, он переходит ко второму действию внутри цикла. Второе действие, заключается в следующем: РОБОТ передвигается на одну клетку вниз. После чего возвращается к началу внешнего цикла.
Проверив последовательно все клетки по правилу движения РОБОТА выясняем, что число клеток, удовлетворяющих условию задачи равно 15 (вся первая строчка, весь столбец F, клетки D2, E2, D4, D6, E4).
Правильный ответ указан под номером 3.
Ответ: 3
Исполнитель редактор
Пример 3.
Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.
А) заменить (v, w).
Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды заменить (111, 27) преобразует строку 05111150 в строку 0527150. Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.
Б) нашлось (v).
Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.
Цикл
ПОКА условие
последовательность команд
КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
ЕСЛИ условие
ТО команда1
ИНАЧЕ команда2
КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 68 идущих подряд цифр 8? В ответе запишите полученную строку.
НАЧАЛО
ПОКА нашлось (222) ИЛИ нашлось (888)
ЕСЛИ нашлось (222)
ТО заменить (222,
ИНАЧЕ заменить (888, 2)
КОНЕЦ ЕСЛИ
КОНЕЦ ПОКА
КОНЕЦ
Решение:
Обозначим строку из 68 восьмерок — 68«8»,
строку из двойки и 65 восьмерок – 1«2»65«8» и т.д.
Отработаем 4 первых цикла программы:
68«8» → 1«2»65«8» → 2«2»62«8» → 3«2»59«8» → 60«8»
В результате количество восьмерок уменьшилось на 8. Не сложно понять, что строка будет уменьшаться на 8 восьмерок каждые 4 итерации. В результате останется строка из 4 восьмерок. Доработаем программу:
…→ 4«8» → 1«2»1«8» = 28
Ответ: 28
Исполнитель черепашка
Пример 4.
Исполнитель Черепашка перемещается на экране компьютера, оставляя след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существуют две команды:
Вперед n, где n – целое число, вызывающее передвижение черепашки на n шагов в направлении движения.
Направо m, где m – целое число, вызывающее изменение направления движения на m градусов по часовой стрелке.
Запись Повтори 5 [Команда1 Команда2] означает, что последовательность команд в скобках повторится 5 раз.
Черепашке был дан для исполнения следующий алгоритм:
Повтори 5 [Повтори 4 [Вперед 40 Направо 90] Направо 120]
Какая фигура появится на экране?
Решение:
Последовательность действий Вперед 40 Направо 90 рисует отрезок длиной 40 шагов, а затем меняет направление на 90 градусов по часовой стрелке. Тогда последовательность Повтори 4 [Вперед 40 Направо 90] нарисует квадрат, а направление вернется в исходное.
Затем выполняется команда Направо 120, она изменит направление на 120 градусов от исходного.
Если повторить все рассмотренные действия 5 раз:
Повтори 5 [Повтори 4 [Вперед 40 Направо 90] Направо 120], то будет 5 раз нарисован квадрат. Причем каждый следующий повернут вокруг вершины относительно предыдущего на 120 градусов. Не сложно заметить, что 4-й квадрат будет нарисован поверх первого (120*3 = 360, сделан поворот на целый круг, возврат в исходное положение), а 5-й поверх второго.
Результат изображен под номером 3.
Ответ: 3
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Задача №14. Выполнение алгоритма.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
09.03.2023
Информатика. ЕГЭ
Задания для подготовки
Задачи разных лет из реальных экзаменов, демо-вариантов, сборников задач и других источников
Задание 14. Информатика. 2022-1
Значение арифметического выражения
$$ 5^{2022} — 2 cdot 5^{1010} + 25^{850} + 2500 $$
записали в системе счисления с основанием (5). Сколько цифр «(4)» содержится в этой записи?
Показать решение…
Задание 14. Информатика. 2022-2
Значение арифметического выражения
$$ 4^{2022} — 2 cdot 4^{1111} + 16^{600} + 192 $$
записали в системе счисления с основанием (4). Сколько цифр «(3)» содержится в этой записи?
Показать решение…
Задание 14. Информатика. 2022-3
Значение арифметического выражения
$$ 2 cdot 3^{2022} + 5 cdot 3^{1800} + 3^{1001} + 4 cdot 3^{1000} + 3 $$
записали в системе счисления с основанием (9). Сколько значащих нулей содержится в этой записи?
Показать решение…
Задание 14. Информатика. 2022-4
Значение арифметического выражения
$$ 3^{2021} + 5 cdot 3^{2000} + 3^{501} + 5 cdot 3^{500} + 1 $$
записали в системе счисления с основанием (9). Сколько значащих нулей содержится в этой записи?
Показать решение…
Задание 14. Информатика. 2022-5
Значение арифметического выражения
$$ 5^{2019} — 5^{1019} + 25^{600} — 125 $$
записали в системе счисления с основанием (5). Сколько цифр «(4)» содержится в этой записи?
Показать решение…
Примеры заданий ЕГЭ по информатике с решением на Паскале. На странице использованы условия задач из демо вариантов и задачника с сайта Полякова Константина Юрьевича (kpolyakov.spb.ru)
Содержание
- Задание 5
- Задание 6
- Задание 14
- Задание 15
- Задание 16
- Задание 17
- Задание 22
- Задание 24
- Задание 25
Задание 5
Демо-2022
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа ещё два разряда по следующему
правилу:
а) складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
б) над этой записью производятся те же действия – справа дописывается остаток от деления суммы её цифр на 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью результирующегочисла R.
Укажите такое наименьшее число N, для которого результат работы данного алгоритма больше числа 77. В ответе это число запишите в десятичной системе счисления.
Решение:
var n, i, b, s, k: integer; r: real; st: string; begin for n := 1 to 100 do begin k := n; //перебор исходного числа N s := 0; //сумма цифр двоичного кода r := 0; //результирующее десятичное число R st := ''; //очищаем строку двоичного кода для нового числа while k >= 1 do //цикл перевода в двоичный код исходного числа begin s := s + (k mod 2); //вычисление суммы цифр двоичного кода st := st + (k mod 2);//формирование строки двоичного кода из остатков деления на 2 k := k div 2;// деление на 2 end; st := ReverseString(st) + s mod 2; //переворачиваем код и дописываем остаток s := s + s mod 2;//вычисление суммы нового кода st := st + s mod 2;//формирование строки двоичного кода с добавлением остатка for i := 1 to Length(st) do //преобразование двоичного кода в десятичное число if st[i] = '1' then r := r + power(2, Length(st) - i); if r > 77 then begin println(n, r);break; end;//вывод найденных чисел end; end.
Задание 6
Демо-2022 Определите, при каком наибольшем введённом значении переменной s программа выведет число 64.
Решение: Используем исходный код. Добавим в него цикл перебора значений S и вывода при выполнении условия. Последнее значение и будет ответом.
var s, n, i: integer; begin for i := 1 to 510 do begin s := i; s := s div 10; n := 1; while s < 51 do begin s := s + 5; n := n * 2 end; if n = 64 then writeln(i); end; end.
Задание 14
Демо-2022 Значение арифметического выражения: 3*438+2*423+420+3*45+2*44+1 – записали в системе счисления с основанием 16. Сколько значащих нулей содержится в этой записи?
Решение:
var k,x:biginteger; begin k:=0; x:=3*4bi**38+2*4bi**23+4bi**20+3*4bi**5+2*4bi**4+1; while x>0 do begin if x mod 16=0 then k:=k+1; x:=x div 16; end; print(k) end.
Демо-2021 Значение арифметического выражения: 497 + 721 – 7 – записали в системе счисления с основанием 7. Сколько цифр 6 содержится в этой записи?
Решение:
var s, i,k6,x:integer; osn,n:biginteger; begin osn:=7; k6:=0; n:=power(osn,14)+power(osn,21)-7; while n>0 do begin if n mod 7 = 6 then k6:=k6+1; n:=n div 7; end; print(k6); end.
Демо-2020 Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 70 идущих подряд цифр 8? В ответе запишите полученную строку.
НАЧАЛО
_ПОКА нашлось (2222) ИЛИ нашлось (8888)
__ЕСЛИ нашлось (2222)
___ТО заменить (2222, 88)
___ИНАЧЕ заменить (8888, 22)
__КОНЕЦ ЕСЛИ
_КОНЕЦ ПОКА
КОНЕЦ
Решение:
begin var s: string := '8' * 70; while (s.contains('2222')) or (s.contains('8888')) do begin if (s.contains('2222')) then s := s.replace('2222', '88') else s := s.replace('8888', '22'); end; writeln(s); end.
Задание 15
Демо-2021 Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа А формула ¬ДЕЛ(x, А) → (ДЕЛ(x, 6) → ¬ДЕЛ(x, 9)) тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?
Решение:
// Делители var a,x, flag: integer; begin for a := 1 to 100 do begin flag := 0; for x := 1 to 1000 do if not(x mod a = 0) <= ((x mod 6 = 0) <= not (x mod 9 = 0)) = false then begin flag := 1; break; end; if flag = 0 then print(a); end; end.
К.Поляков №161 Определите наименьшее натуральное число A, такое что выражение
(X & 29 ≠ 0) → ((X & 17 = 0) → (X & A ≠ 0))
тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной X)?
Посмотреть решение
var A, x, flag: integer; begin for A := 0 to 31 do begin flag := 0; for x := 0 to 31 do if (((x and 29) = 0) or ((x and 17) <> 0) or ((x and A) <> 0))=false then flag := 1; if flag = 0 then begin writeln(A); break; end; end; end.
Задание 16
Демо-2022 Алгоритм вычисления значения функции F(n), где n – натуральное число, задан следующими соотношениями:
F(n) = 1 при n = 1;
F(n) = n + F(n − 1), если n – чётно,
F(n) = 2 × F(n − 2), если n > 1 и при этом n – нечётно.
Чему равно значение функции F(26)?
Решение:
var i, n: integer; f: array[1..100] of integer; begin print('Введите значение n'); readln(n); f[1] := 1; for i := 2 to n do if i mod 2 = 0 then f[i] := i + f[i - 1] else f[i] := 2 * f[i - 2]; print(f[n]); end.
К.Поляков №46Алгоритм вычисления функции F(n) задан следующими соотношениями:
F(n) = n при n ≤ 3;
F(n) = 2 · n · n + F(n – 1) при чётных n > 3;
F(n) = n · n · n + n + F(n – 1) при нечётных n > 3;
Определите количество натуральных значений n, при которых F(n) меньше, чем 107.
Посмотреть решение
var i: integer; f: array[1..1000] of integer; begin i:=3; f[1] := 1; f[2] := 2; f[3] := 3; while f[i]< 10**7 do begin i:=i+1; if i mod 2 = 0 then f[i] := 2*i*i + f[i - 1] else f[i] := i*i*i+i +f[i - 1]; end; print(i-1);// не учитываем последнее число end.
Задание 17
Демо-2022
В файле содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от –10 000 до 10 000 включительно. Определите и запишите в ответе сначала количество пар элементов последовательности, в которых хотя бы одно число делится на 3, затем максимальную из сумм элементов таких пар. В данной задаче под парой подразумевается два идущих подряд элемента последовательности.Файл с данными: 17.txt
Решение:
var a,b,k,maxsum: integer; begin Assign( input, '17.txt' ); maxsum:=-20000; k:=0; readln(a); while not eof do begin readln(b); if (a mod 3 = 0) or (b mod 3 = 0) then begin k := k + 1; if a + b > maxsum then maxsum := a + b; end; a := b; end; Println( k, maxsum) end.
Задание 22
Демо-2022
Ниже на языке программирования записан алгоритм. Получив на вход число x, этот алгоритм печатает два числа: L и M. Укажите наибольшее число x, при вводе которого алгоритм печатает сначала 4,а потом 5.
![]()
Решение:
var x, i, L, M, Q: integer; begin for i := 9 to 50 do begin x := i; Q := 9; L := 0; while x >= Q do begin L := L + 1; x := x - Q; end; M := x; if M < L then begin M := L; L := x; end; if (L = 4) and (M = 5) then print(i); end; end.
Задание 24
Демо-2022
Текстовый файл состоит из символов P, Q, R и S. Определите максимальное количество идущих подряд символов в прилагаемом файле, среди которых нет идущих подряд символов P. Для выполнения этого задания следует написать программу.Файл с данными: 24.txt
Решение:
var i, maxlen, curlen: longint; {описание переменных} s: string; f: text;{текстовый файл} begin assign(f, '24.txt'); {исходный текстовые файл с данными} reset(f); readln(f, s);{открываем файл для чтения данных} maxlen := 1; curlen := 1; for i := 2 to Length(s) do if not ((s[i] = 'P') and (s[i-1] = 'P')) then begin curLen := curLen + 1; if curLen > maxLen then maxLen := curLen; end else curLen := 1; writeln(maxLen); close(f); { закрываем файл} end.
Задание 25
Демо-2022
Пусть M – сумма минимального и максимального натуральных делителей целого числа, не считая единицы и самого числа. Если таких делителей и у числа нет, то значение M считается равным нулю. Напишите программу, которая перебирает целые числа, большие 700 000, в порядке возрастания и ищет среди них такие, для которых значение M оканчивается на 8. Выведите первые пять найденных чисел и соответствующие им значения M.
Формат вывода: для каждого из пяти таких найденных чисел в отдельной строке сначала выводится само число, затем – значение М.
Строки выводятся в порядке возрастания найденных чисел.
Решение:
var d1, chislo: integer; begin for chislo := 700001 to 700100 do for d1 := 2 to chislo - 1 do if chislo mod d1 = 0 then begin if (d1 + chislo div d1) mod 10 = 8 then println(chislo, d1 + chislo div d1); break; end; end.