Как делать 18 задание егэ математика профиль

Говорят, что задание 18 Профильного ЕГЭ по математике (на числа и их свойства) решить невозможно. Но это не так. Можно научиться! Можно сделать первый шаг – прочитать эту статью и узнать о секретах решения задачи 18.

Еще говорят, что это задача «на смекалку». Но и это не так. Дело не в загадочной «смекалке», а в знании определенных приемов, ключиков, хитрых инструментов. Некоторые из них вы сейчас увидите. Пусть это будет первое знакомство с нестандартными, ни на что не похожими задачами на числа и их свойства.

4. Маша и Наташа делают фотографии. Каждый день каждая девочка делает на одну фотографию больше, чем в предыдущий день. В конце Наташа сделала на 935 фотографий больше, чем Маша.

а) Могло ли это произойти за 5 дней?

б) Могло ли это произойти за 9 дней?

в) Какое максимальное количество фотографий могла сделать Наташа, если Маша в последний день сделала меньше 50 фотографий?

Пусть в первый день Маша делает х фотографий, а Наташа у фотографий.

На второй день: Маша x+1, а Наташа y+1 фотографию.

В n-ный день Маша сделает x+n-1, а Наташа y+n-1 фотографию.

По условию, число фотографий, которые ежедневно делает Маша, образует арифметическую прогрессию с разностью 1. Число Наташиных фотографий также образует арифметическую прогрессию. Вспомним формулу суммы арифметической прогрессии:

S_{n}=frac{a_{1}+a_{2}}{2}cdot n=frac{2a_{1}+left ( n-1 right )d}{2}cdot n

За n дней Маша сделает frac{2x+n-1}{2}cdot n, а Наташа frac{2y+n-1}{2}cdot n фотографий. Разность этих величин frac{2y+n-1}{2}cdot n-frac{2x+n-1}{2}cdot n=left ( y-x right )n=935

Мы получили, что left ( y-x right )n=935.

а) Случай n = 5 возможен. Это значит, что то y-x=935:5=187. Каждый день Наташа делала на 187 фотографий больше, чем Маша.

б) Случай n = 9 невозможен. Уравнение 9left (y-x right )=935 не имеет целых решений, поскольку 935 не делится на 9.

Это один из приемов решения нестандартных задач. Часто мы получаем уравнение с двумя (тремя, четырьмя…) переменными. Помогает то, что эти переменные – натуральные. Мы внимательно смотрим на полученное уравнение. Если его левая часть положительна, то и правая должна быть положительна. Если левая четна, то и правая должна быть четна. Если левая часть кратна 9, то и правая часть должна быть кратна 9.

в) В последний день Маша сделала меньше 50 фотографий.

Еще один лайфхак. В задачах на числа и их свойства строгие неравенства лучше заменять нестрогими:

x+nleq 49.

Найдем, какое максимальное количество фотографий могла при этом сделать Наташа.

У нас есть единственное уравнение:
left ( y-x right )n=935. Поскольку y-x – целое, n должно быть делителем числа 935. Разложим 935 на множители: 935 = 5∙11∙17.

Числа 1, 5, 11, 17, 55, 85, 187, 935 – делители числа 935.

При этом ngeq 55 невозможно, поскольку по условию x+nleq 49.

Составим таблицу для значений n, равных 1, 5, 11 и 17.

boldsymbol{n} boldsymbol{x} boldsymbol{y-x=frac{935}{n}} boldsymbol{y=frac{935}{n}+x} Количество фотографий,сделанных Наташей за boldsymbol{n} дней:
boldsymbol{S=frac{2y+n-1}{2}cdot n}
1 boldsymbol{xleq 49} 935 boldsymbol{yleq 984} boldsymbol{Sleq 984}
5 boldsymbol{xleq 45} 187 boldsymbol{yleq 232} boldsymbol{Sleq 1170}
11 boldsymbol{xleq 39} 85 boldsymbol{yleq 124} boldsymbol{Sleq 1419}
17 boldsymbol{xleq 33} 55 boldsymbol{yleq 88} boldsymbol{Sleq 1632}

Количество фотографий, которые могла сделать Наташа, не превышает 1632. Если n=17,;x=33,;y=88, то S=1632.

Ответ: 1632.

Посмотрите, как мы действовали. Сначала сделали «заготовку» для всех трех пунктов. Да, такой прием тоже часто применяется в нестандартных задачах.

Получили уравнение left ( y-x right )n=935. Из одного этого уравнения (как в сказке про суп из топора) мы получаем всё, что нам нужно. В пункте (в) есть перебор вариантов, но не хаотичный, а умный. Иначе перебирать варианты можно бесконечно.

Вот еще одна задача на числа и их свойства:

2. Группу школьников нужно перевезти из летнего лагеря одним из двух способов: либо двумя автобусами типа A за несколько рейсов, либо тремя автобусами типа В за несколько рейсов, причём в этом случае число рейсов каждого автобуса типа B будет на один меньше, чем рейсов каждого автобуса типа А. В каждом из случаев автобусы заполняются полностью. Какое максимальное количество школьников можно перевезти при указанных условиях, если в автобус типа B входит на 7 человек
меньше, чем в автобус типа A?

Помните, как мы решали текстовые задачи? Мы записывали данные задачи в таблицу. Сделаем так же.

Тип автобуса Сколько автобусов Сколько рейсов Сколько человек в автобусе
boldsymbol{A} boldsymbol{2} boldsymbol{n} boldsymbol{m+7}
boldsymbol{B} boldsymbol{3} boldsymbol{n-1} boldsymbol{m}

По условию, количество школьников, которое надо перевезти, одно и то же.

Оно равно 3left ( n-1 right )m=2nleft ( m+7 right ). Отсюда 3mn-3m=2nm+14n.
Выразим одну из переменных через другую: m=frac{14n}{n-3}
Мы видим, что переменная n и в числителе, и в знаменателе дроби. Оценить m трудно, правда? Чтобы проще было это сделать, выделим в дроби frac{14n}{n-3} целую часть.

Еще один прием решения нестандартных задач – выделение целой части. Это помогает сделать оценку какой-либо величины.

m=frac{14n}{n-3}=frac{14left ( n-3 right )+42}{n-3}=14+frac{42}{n-3} .

Поскольку m – натуральное число (количество школьников в автобусе типа В), выражение в правой части также должно быть целым положительным. Значит, 42 делится на n-3 без остатка.

Выпишем делители числа 42. Это 1; 2; 3; 6: 7; 14; 21; 42.

Заполним таблицу. Значения m вычисляем по формуле m=14+frac{42}{n-3}, а общее количество школьников – как 3left ( n-1 right )m.

boldsymbol{n-3} boldsymbol{n} boldsymbol{m} Общее количество школьников
1 4 56 504
2 5 35 420
3 6 28 420
6 9 21 504
7 10 20 540
14 17 17 816
21 24 16 1104
42 45 15 1980

Наибольшее количество школьников, которое можно перевезти в условиях задачи, равно 1980.

Конечно, мы выбирали довольно простые задачи. И конечно, есть и другие приемы их решения.

Например, метод «Оценка плюс пример». Мы разбираем множество нестандартных задач на наших интенсивах в ЕГЭ-Студии, а также на Онлайн-курсе.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Профильный ЕГЭ по математике, задание 18. Секреты решения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.03.2023

Задание №18 – для олимпиадников?

Мы знаем, что в ЕГЭ по математике вторая часть кажется значительно сложнее первой. Но особенно много вопросов вызывает задание №18. Многие думают, что решить его под силам только олимпиадникам.

Но так ли это?

Задание №18 в ЕГЭ по математике: Как решать?
Давай попробуем разобраться, почему эта задача кажется такой необычной и сложной. А еще разберемся, как ее решать!

Формат задачи

По формату задача абсолютно стандартная. Она состоит из нескольких пунктов, за каждый из которых можно получить баллы. Давай посмотрим подробнее:

Пункт А

В этой части задачи в большинстве случаев надо дать ответ на вопрос о возможности или невозможности какой-то ситуации. Если ты отвечаешь, что ситуация возможна, значит, ты можешь подтвердить ее каким-то примером.
Кстати, чаще всего эта часть решается довольно легко. Найти пример не составит труда.
Главное — не торопиться и внимательно прочитать условие задачи!

Пункт Б

Этот пункт очень схож с пунктом А. Но очень часто решение пункта Б сводится к тому, что ситуация невозможна. И тебе остается только это доказать. Но не забудь, что невозможность ситуации доказывается в общем виде, а не на конкретном примере.
А как доказать? Обычно такое доказывается с помощью рассмотрения оценок, делимостей, ограничений и т.д.
Но это только звучит сложно и страшно. Если немного потренироваться, ты научишься очень быстро решать такие задачи.

Пункт В

Последний пункт чуть-чуть посложнее, но и получить за него можно 2 балла! С наибольшей вероятностью в пункте В нужно будет найти наименьшее или наибольшее значение величины, связанной с условием задачи.
Тебе нужно будет сделать оценку на искомую величину и привести пример, когда эта оценка выполняется. За каждый правильно выполненный шаг ты получишь по 1 баллу.

Алгоритм решения задачи

К сожалению, эту задачу не получится решить, подобрав типовой алгоритм. Тут придется поразмышлять. Но от этого интереснее!
Мы подготовили для тебя подборку тем, которые пригодятся тебе для решения №18.
Задание №18 в ЕГЭ по математике: Как решать?
Разбирая задание №18, ты потренируешь свой мозг и научишься решать нестандартные задачи.

Если ты переживаешь, оставь эту задачку напоследок. Решишь ее, когда останется время.

Ну а раз ты здесь, значит, ты хочешь получить высокие баллы и максимально в этом заинтересован!
И мы знаем, что у тебя все получится!


2022-03-21 17:59

ЕГЭ
Математика

Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня

Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.

Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.

«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.

Чему нужно научиться, решая задачи с параметром

В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.

Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.

Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.

Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:

  • задачи, основанные на свойствах дискриминанта и старшего коэффициента квадратного трехчлена;
  • применение теоремы Виета в задачах с параметром;
  • расположение корней квадратного трехчлена относительно заданных точек;
  • более сложные задачи, сводящиеся к исследованию квадратного трехчлена.
  • Следующая тема курса – графические методы решения задач с параметром

    Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a). Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.

    На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.

    В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.

    Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.

    Тренажер с пошаговым решением

    Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.

    Регулярно тренируйтесь в решении задач

    Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
    Вы можете:

    • Начать заниматься бесплатно.

    • Купить доступ
      к этой задаче в составе
      экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.

    Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.

    Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.

    Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
    Разбор задач с параметрами из ЕГЭ по математике, по теме задачи с параметром ЕГЭ, как решать задание 18 в экзамене ЕГЭ, задачи с параметром ЕГЭ, задания с параметром ЕГЭ, задача 18 ЕГЭ, модуль и окружности, решение параметров ЕГЭ, решение задачи 18, система уравнений с параметром, научиться решать задачи с параметрами, сложных задач варианта КИМ ЕГЭ, начертить графики функций, ЕГЭ по математике профильного уровня, методы решения уравнений и неравенств, выпускникам 11 класса в 2018 году, поступающим в технический вуз.


    Задачи с параметром


    В 18 задании –  предпоследнем задании профильного уровня ЕГЭ по математике – необходимо продемонстрировать умение решать задачи с параметрами. В подавляющем большинстве данное задание представляет собой систему из двух уравнений с параметром а, и необходимо найти такие значения, при которых система будет вести себя заданным образом – иметь два или одно или вообще не иметь решений.


    Разбор типовых вариантов заданий №18 ЕГЭ по математике профильного уровня


    Первый вариант задания (демонстрационный вариант 2018)

    [su_note note_color=”#defae6″]

    Найдите все положительные значения a, при каждом из которых система имеет единственное решение:

    • (|x|–5)2+(y–4)2=4
    • (x–2)2+y2=a2

    [/su_note]

    Алгоритм решения:
    1. Рассматриваем второе уравнения, устанавливаем, что является его графиком.
    2. Определяем условие единственности решения.
    3. Находим расстояние между центрами, определяем значения параметра.
    4. Записываем ответ.
    Решение:

    1. Первое уравнение – это две окружности радиусами 3 и координатами центров С 2(5;4) и С2(-5;4). Одну окружность задает данное уравнение при х≥0, а вторую – при х<0. Они не пересекаются и не касаются.

    2. Второе уравнение – это одна окружность радиуса “а” с координатами центра: С (-2;0).

    3. Наличие единственного решения означает, что одна окружность должна коснуться одной из окружностей в одной точке. Поэтому следует решить попарно две системы.

    Первая:

    Вторая:

    Естественно, в первом и втором случае получается пара корней т. е. координат касания внешним и внутренним образом.

    Но стоит заметить что нас будут интересовать только корни определяющие касание внешнее левой окружности и касание внутреннее правой окружности. Т. к. два других уравнения противоречить условию и будут иметь более одного решения. Достаточно взглянуть на прилагаемый рисунок:

    4. Воспользуемся приложенным рисунком.

    Проведем лучи СС1, и СС2, обозначив точки их пересечения с окружностями А1, В1 и А2, В2.
    Тогда

    Если a<CA2 или CA2<a<CB2 окружности не пересекаются. А это означает, корней система иметь не может.

    5. Имеем: исходная система имеет единственное решение при

    Ответ:


    Второй вариант (из Ященко, №1)

    [su_note note_color=”#defae6″]

    Найдите все значения а, при каждом из которых уравнение

    http://self-edu.ru/htm/2018/ege2018_36/files/1_18.files/image001.gif

    имеет ровно один корень.

    [/su_note]

    Решение:

    Данное уравнение равносильно виду:

    Рассматриваем случай:

     при условии

    Получаем .

    При этом значении х условие принимает вид:

    Отсюда

    Имеем в данном случае:  при .

    Рассмотрим теперь случай:

    ,

    при этом .

    Решаем уравнение. Получаем:

    Отсюда .

    Условие принимает вид:

    Следовательно, получается . То есть  при .

    Корни  и  равны между собой, если .

    Таким образом, уравнение имеет только один корень если  и .

    Ответ:

    Даниил Романович | Просмотров: 5.5k

    Блок 1. Введение

    1.1 Решите уравнения с параметром а:
    а) ax = − 5;
    б) (a−1)x = −3;
    в) (a−2)x = 2−a
    г) (a−2)x = (a−2)(a+3)
    Смотреть видеоразбор
    1.2 Определите при каких значениях параметра а:
    а) уравнение |x| = a−3 имеет один корень;
    б) уравнение |x| = a2−5 не имеет корней.
    Смотреть видеоразбор
    1.3 Функция задана формулой y=x^2+ax+b. Найдите a и b, если:
    а) график функции проходит через точки (0;3) и (-1;8);
    б) наименьшее значение, равное −4, функция принимает при x = 1
    Смотреть видеоразбор

    Блок 2. Координатно-параметрический метод

    2.1 Найдите все значения параметра а, при каждом из которых уравнение frac{|3x|-2x-2-a}{x^2-2x-a}=0 имеет ровно два различных корня Смотреть видеоразбор
    2.2 Найдите все значения а, при каждом из которых система уравнений begin{cases} frac{xy^2-3xy-3y+9}{sqrt{x+3}}=0 \ y=ax end{cases} имеет ровно два различных решения Смотреть видеоразбор
    2.3 Найдите все значения параметра а, при каждом из которых уравнение frac{x^2-4x+a}{5x^2-6ax+a^2} = 0 имеет ровно два различных корня Смотреть видеоразбор
    2.4 Найти все значения а, при каждом из которых уравнение sqrt{3x-2} cdot ln(x-a) = sqrt{3x-2} cdot ln(2x+a) имеет ровно один корень на отрезке [0; 1] Смотреть видеоразбор
    2.5 Найти все значения а, при каждом из которых уравнение (4^x-3 cdot 2^x + 3a — a^2)cdotsqrt{2-x} = 0 имеет ровно два различных корня Смотреть видеоразбор
    2.6 Найти все действительные значения величины h , при которых уравнение x(x+1)(x+h)(x+1+h) = h^2 имеет 4 действительных корня Смотреть видеоразбор

    Блок 3. Преобразование графиков

    3.1 Найдите все значения a, при каждом из которых наименьшее значение функции f(x) = 2ax+|x^2-8x+7| больше 1 Смотреть видеоразбор
    3.2 Найти все значения параметра a, при каждом из которых уравнение (|x-2|+|x+a|)^2-7(|x-2|+|x+a|)-4a(4a-7) = 0 имеет ровно два корня Смотреть видеоразбор
    3.3 Максимальное значение выражения x + 2y при условии log_{frac{x^2+y^2}{2}}ay ge 1 равно 4. Чему равно положительное значение параметра a? Смотреть видеоразбор
    3.4 Найти все значения параметра a, при каждом из которых уравнение f(x) = |a+2|sqrt[3]{x} имеет 4 решения, где f — чётная периодическая функция с периодом T=frac{16}{3}, определённая на всей числовой прямой, причём f(x)=ax^2, если 0 le x le frac{8}{3} Смотреть видеоразбор

    Блок 4. Системы с параметром

    4.1 Найдите все положительные значения a, при каждом из которых система begin{cases} (|x|-5)^2+(y-4)^2=9 \ (x+2)^2+y^2=a^2 end{cases} имеет единственное решение Смотреть видеоразбор
    4.2 Найдите все значения параметра a, при каждом из которых система уравнений begin{cases} frac{(y^2-xy-4y+2x+4)sqrt{x+4}}{sqrt{5-y}} \ a=x+y end{cases} имеет единственное решение Смотреть видеоразбор
    4.3 Найдите все значения параметра a, при каждом из которых система уравнений begin{cases} (x-2a+3)^2+(y-4)^2=2,25 \ (x+3)^2+(y-a)^2=a^2+2a+1 end{cases} имеет единственное решение Смотреть видеоразбор
    4.4 Найти все значения параметра a, при каждом из которых система begin{cases} ((x-5)^2+(y-3)^2-9)((x-2)^2+(y-1)^2) le 0 \ y=ax+a+3 end{cases} не имеет решений Смотреть видеоразбор

    Блок 5. Квадратичная функция

    5.1 Найти все значения параметра a, при каждом из которых неравенство |frac{x^2+ax+1}{x^2+x+1}| lt 3 выполняется при всех значениях x Смотреть видеоразбор
    5.2 При каких значениях p вершины парабол y=-x^2+2px+3 и y=x^2-6px+p расположены по разные стороны от оси x? Смотреть видеоразбор
    5.3 Найти все значения a, при каждом из которых f(x)=x^2-|x-a^2|-5x имеет хотя бы одну точку максимума Смотреть видеоразбор
    5.4 Найдите все значения параметра a при каждом из которых множество значений функции y=frac{3x+3-2ax}{x^2+2(2a+1)x+4a^2+4a+2} содержит отрезок [0;1] Смотреть видеоразбор
    5.5 Найти все значения параметра a, при каждом из которых множество значений функции y=frac{5a-15x+ax}{x^2-2ax+a^2+25} содержит отрезок [0;1] Смотреть видеоразбор
    5.6 Найдите все значения параметра a, при каждом из которых неравенство |frac{x^2+x-2a}{x+a}-1| le 2 не имеет решений на интервале (1;2) Смотреть видеоразбор
    5.7 Найдите все значения параметра a, при каждом из которых уравнение frac{a^3-(x+2)a^2+xa+x^2}{a+x} = 0 имеет ровно один корень Смотреть видеоразбор
    5.8 Найдите все значения a, при каждом из которых множество значений функции y=frac{cos{x}-a}{cos{2x}-4}содержит число −2 Смотреть видеоразбор
    5.9 Найти все значения параметра a, при каждом из которых уравнение (4cos{x}-3-a)cos{x}-2,5cos{2x}+1,5=0 имеет хотя бы один корень Смотреть видеоразбор
    5.10 Найти все значения параметра a, при каждом из которых уравнение 4^{|x|}=frac{7a}{a-5}cdot 2^{|x|}-frac{12a+17}{a-5} имеет ровно два различных корня Смотреть видеоразбор
    5.11 Найдите все значения а, при каждом из которых множество решений неравенства frac{a-(a^2-2a-3)cos{x}+4}{sin^2{x}+a^2+1} lt 1 содержит отрезок [-frac{pi}{3}; frac{pi}{2}] Смотреть видеоразбор

    Блок 6. Расположение корней квадратного уравнения

    6.1 Найти все значения параметра a, при которых разность между корнями уравнения x^2+3ax+a^4=0 максимальна Смотреть видеоразбор
    6.2 Найти все значения параметра а, при каждом из которых уравнение log_{1-x}(a-x+2) = 2 имеет хотя бы один корень, принадлежащий промежутку (-1;1] Смотреть видеоразбор

    Блок 7. Аналитический метод

    7.1 При каких значениях а корни уравнения |x-a^2|=-a^2+2a+3 имеют одинаковые знаки? Смотреть видеоразбор
    7.2 Найти все значения параметра а, при которых неравенство x^2+2|x-a| ge a^2 справедливо для всех действительных x Смотреть видеоразбор
    7.3 Найти все значения параметра а, при каждом из которых уравнение |sin^2{x}+2cos{x}+a|=sin^2{x}+cos{x}-a имеет на промежутке (frac{pi}{2};pi] единственный корень Смотреть видеоразбор
    7.4 Найти все значения параметра а, при каждом из которых уравнение (x^2-4ax+a(4a-1))^2-3(x^2-4ax+a(4a-1))-|a|(|a|-3)=0 имеет более двух корней Смотреть видеоразбор

    Блок 8. Функциональные методы

    8.1 Найти все значения параметра a, при каждом из которых уравнение x^2+(a+7)^2=|x-7-a|+|x+a+7| имеет единственный корень Смотреть видеоразбор
    8.2 Найти все значения параметра a, при каждом из которых система begin{cases} ax^2+4ax-8y+6a+28 le 0 \ ax^2-6ay-8x+11a-12 le 0 end{cases} имеет ровно одно решение Смотреть видеоразбор
    8.3 Найдите все значения параметра alpha из интервала (0; pi), при каждом из которых система begin{cases} x^2+y^2-4(x+y)sin{alpha}+8sin^2{alpha} = 2sin{alpha}-1 \ frac{x}{y}+frac{y}{x} = 2sin{alpha}+4sin^2{alpha} end{cases} имеет единственное решение Смотреть видеоразбор
    8.4 Найдите все неотрицательные значения параметра a, при каждом из которых множество решений неравенства 1 le frac{2a+x^2-4log_{frac{1}{3}}(4a^2-4a+9)}{5sqrt{18x^4+7x^2}+2a+4+(log_{frac{1}{3}}(4a^2-4a+9))} состоит из одной точки и найти это решение. Смотреть видеоразбор
    8.5 Найдите все значения a, для каждого из которых уравнение 8x^6+(a-|x|)^3+2x^2-|x|+a=0 имеет более трёх различных решений. Смотреть видеоразбор
    8.6 Найти все значения параметра a, при каждом из которых уравнение x^10+(a-2|x|)^5+x^2-2|x|+a=0 имеет более трёх различных решений. Смотреть видеоразбор
    8.7 Найти все значения параметра a, при каждом из которых уравнение 64x^6-(a-3x)^3+4x^2+3x=a имеет более одного корня. Смотреть видеоразбор
    8.8 Найти все значения параметра a, для каждого из которых существует хотя бы одна пара чисел x и y , удовлетворяющих неравенству 5|x-2|+3|x+a| le sqrt{4-y^2}+7 Смотреть видеоразбор
    8.9 Найти все значения параметра a, при каждом из которых уравнение (log_7(2x+2a)-log_7(2x-2a))^2-8a(log_7(2x+2a)-log_7(2x-2a))+12a^2+8a-4 имеет ровно два корня. Смотреть видеоразбор
    8.10 Найти все значения параметра a, при каждом из которых уравнение a^2-10a+5sqrt{x^2+25}=4|x-5a|-8|x| имеет хотя бы один корень Смотреть видеоразбор
    8.11 Найти все значения параметра a, при которых уравнение (a+2)^2 cdot log_3(2x-x^2)+(3x-1)^2 cdot log_{11}(1-frac{x^2}{2})=0 имеет решение Смотреть видеоразбор
    8.12 При каких значениях параметра a уравнение ax^6=e^x имеет одно положительное решение? Смотреть видеоразбор

    Блок 9. Разные задачи с параметром

    9.1 Найти все значения параметра a, при которых уравнение sqrt{1-(x^2-4x-a^2+2a+3)^6}+sqrt{1+(x^2-4x-a^2+2a+3)^6} = 2 имеет только один положительный корень Смотреть видеоразбор
    9.2 Найти все положительные значения параметра a, при каждом из которых наименьшее значение f(x)=2x^3-3ax^2+5 на отрезке, заданном неравенством |x-2| le 1, не меньше, чем −3 Смотреть видеоразбор
    9.3 Найдите все значения параметра b , при каждом из которых для любого a неравенство (x-a-2b)^2+(y-3a-b)^2 lt frac{1}{2} имеет хотя бы одно целочисленное решение (x, y). Смотреть видеоразбор
    9.4 Найти все a, при каждом из которых уравнение sqrt{a-9cos^4{x}}=sin^2{x} имеет решение Смотреть видеоразбор
    9.5 Найдите наибольшее целое значение a, при котором уравнение 3x^2-12x+3a+9=4sin{frac{4x-x^2-a-3}{2}} cdot cos{frac{x^2-2x-a-1}{2}} имеет ровно два различных решения Смотреть видеоразбор
    9.6 Найдите все целые отрицательные значения параметра a, при каждом из которых существует такое действительное число b>a, что неравенство 21b ge 6|a+b|-3|b-2|-|a-b|-9|a^2-b+2|+16 не выполнено Смотреть видеоразбор

    Понравилась статья? Поделить с друзьями:

    Новое и интересное на сайте:

  • Как делать 18 задание в егэ по обществознанию 2023
  • Как делать 18 задание в егэ по математике профильный уровень 2022
  • Как делать первое задание в егэ по русскому 2022
  • Как делать 14 задание егэ по информатике на пайтоне
  • Как делать 14 задание егэ информатика 2022

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии