Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Линейные уравнения
Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$
Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.
$5 (5 + 3х) — 10х = 8$
Раскроем скобки.
$25 + 15х — 10х = 8$
Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.
$15х — 10х = 8 — 25$
Приведем подобные слагаемые.
$5х = -17$ — это конечный результат преобразований.
После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = {b}/{a}$
$х=-{17}/{5}$
$х = — 3,4$
Ответ: $- 3,4$
Квадратные уравнения
Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.
Числа $a, b, c$ называются коэффициентами квадратного уравнения.
- $a$ — старший коэффициент;
- $b$ — средний коэффициент;
- $c$ — свободный член.
Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.
Решение неполных квадратных уравнений
Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.
1. Вынесем общий множитель $x$ за скобки.
Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:
$x = 0; ax + b = 0$
2. Решаем получившиеся уравнения каждое отдельно.
Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$
$4х^2 — 5х = 0$
Вынесем х как общий множитель за скобки:
$х (4х — 5) = 0$
Приравняем каждый множитель к нулю и найдем корни уравнения.
$x = 0$ или $4х — 5 = 0$
$х_1 = 0 х_2 = 1,25$
Ответ: $х_1 = 0; х_2 = 1,25$
Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$
Для решения данного неполного квадратного уравнения выразим $x^2$.
$ax^2 + c = 0$
$ax^2 = — c$
$x_2 = {-c}/{a}$
При решении последнего уравнения возможны два случая:
если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$
если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.
$x^2 — 16 = 0$
$x^2 = 16$
$x = ±4$
Ответ: $х_1 = 4, х_2 = — 4$
Решение полного квадратного уравнения
Решение с помощью дискриминанта
Дискриминантом квадратного уравнения D называется выражение
$b^2 — 4ac$.
При решении уравнения с помощью дискриминанта возможны три случая:
1. $D > 0$. Тогда корни уравнения равны:
$x_{1,2}={-b±√D}/{2a}$
2. $D = 0$. В данном случае решение даёт два двукратных корня:
$x_{1}=x_{2}={-b}/{2a}$
3. $D < 0$. В этом случае уравнение не имеет корней.
$3х^2 — 11 = -8х$
Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней
$3х^2 + 8х — 11 = 0$
$a = 3 ,b = 8, c = — 11$
$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$
$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$
$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$
Ответ: $x_1=1, x_2=-3{2}/{3}$
Устные способы
Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$
$4х^2+ 3х — 7 = 0$
$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$
Ответ: $х_1= 1, х_2 = -{7}/{4}$
Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$
$5х^2+ 7х + 2 = 0$
$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$
Ответ: $х_1= -1, х_2 = -{2}/{5}$
Кубические уравнения
Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.
$(x — 3)^3 = 27$
Представим обе части как основания в третьей степени
$(x — 3)^3 = $33
Извлечем кубический корень из обеих частей
$х — 3 = 3$
Соберем известные слагаемые в правой части
$x = 6$
Ответ: $х = 6$
Дробно рациональные уравнения
Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.
Чтобы решить дробное уравнение, необходимо:
- найти общий знаменатель дробей, входящих в уравнение;
- умножить обе части уравнения на общий знаменатель;
- решить получившееся целое уравнение;
- исключить из его корней те, которые обращают в ноль общий знаменатель.
$4x + 1 — {3}/{x} = 0$
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x≠0$
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x + 1 — {3}/{x}= 0¦· x$
$4x · x + 1 · x — {3·x}/{x} = 0$
3. решаем полученное уравнение
$4x^2 + x — 3 = 0$
Решим вторым устным способом, т.к. $а + с = b$
Тогда $х_1 = — 1, х_2 = {3}/{4}$
4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $х_1 = — 1, х_2 = {3}/{4}$
При решении уравнения с двумя дробями можно использовать основное свойство пропорции.
Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$
${3х-5}/{-2}={1}/{х}$
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x≠0$
Воспользуемся основным свойством пропорции
$х (3х — 5) = -2$
Раскроем скобки и соберем все слагаемые в левой части уравнения
$3х^2- 5х + 2 = 0$
Решим данное квадратное уравнение первым устным способом, т.к.
$a + b + c = 0$
$x_1 = 1, x_2 = {2}/{3}$
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $x_1 = 1, x_2 = {2}/{3}$
Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.
Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.
Например,
${2}/{x}+5x=7$ – рациональное уравнение
$3x+√x=7$ — иррациональное уравнение (содержит корень)
Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.
Чтобы решить дробно рациональное уравнение, необходимо:
- Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
- Найти общий знаменатель дробей, входящих в уравнение;
- Умножить обе части уравнения на общий знаменатель;
- Решить получившееся целое уравнение;
- Исключить из его корней те, которые обращают в ноль общий знаменатель.
Решить уравнение: $4x+1-{3}/{x}=0$
Решение:
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x ≠ 0$
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x+1-{3}/{x}=0|·x$
$4x·x+1·x-{3·x}/{x}=0$
3. решаем полученное уравнение
$4x^2+x-3=0$
Решим вторым устным способом, т.к. $а+с=b$
Тогда, $x_1=-1, x_2=-{3}/{4}$
4. исключаем те корни, при которых общий знаменатель равен нулю
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $x_1=-1, x_2=-{3}/{4}$
При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.
Основное свойство пропорции: Если ${a}/{b}={c}/{d}$ — пропорция, то $a·d=b·c$
Решить уравнение ${3x-5}/{-2}={1}/{x}$
Решение:
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
$x≠0$
Воспользуемся основным свойством пропорции
$х(3х-5)=-2$
Раскроем скобки и соберем все слагаемые в левой стороне
$3х^2-5х+2=0$
Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$
$x_1=1, x_2={2}/{3}$
В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $x_1=1, x_2={2}/{3}$
Уравнения, содержащие неизвестную под знаком корня, называются иррациональными.
Чтобы решить иррациональное уравнение, необходимо:
- Преобразовать заданное иррациональное уравнение к виду: $√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$
- Обе части уравнение возвести в квадрат: $√{f(x)}^2=(g(x))^2$ или $√{f(x)}^2=√{g(x)}^2$
- Решить полученное рациональное уравнение.
- Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)
Решите уравнение $√{4х-3}=х$. Если уравнение имеет более одного корня, укажите наименьший из них.
Решение:
Обе части уравнение возведем в квадрат:
$√{4х-3}^2=х^2$
Получаем квадратное уравнение:
$4х-3=х^2$
Перенесем все слагаемые в левую часть уравнения:
${-х}^2+4х-3=0$
Решим данное квадратное уравнение устным способом, так как
$a+b+c=0$
$-1+4-3=0$, следовательно $х_1 = 1; х_2={с}/{а}={-3}/{-1}=3$
Проведем проверку корней, подставив их вместо икса в исходное уравнение
$√{4·1-3}=1$
$1=1$, получили в результате проверки верное равенство, следовательно $х_1=1$ подходит.
$√{4·(3)-3}=3$
$√9=3$
$3=3$, получили в результате проверки верное равенство, следовательно корень $х_2=3$ подходит
$х_1=1$ наименьший корень.
Ответ: $1$
Так как в иррациональных уравнениях иногда необходимо возводить в квадрат не только число, но и целое выражение, необходимо вспомнить формулы сокращенного умножения:
- Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе число плюс квадрат второго числа. $(a-b)^2=a^2-2ab+b^2$
- Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа. $(a+b)^2=a^2+2ab+b^2$
Решить уравнение: $х-6=√{8-х}$
Возведем обе части уравнения в квадрат
$(х-6)^2=8-х$
В левой части уравнения при возведении в квадрат получаем формулу сокращенного умножения квадрат разности. В правой части уравнения квадрат и корень компенсируют друг друга и в результате остается только подкоренное выражение
$х^2-2·6·х+6^2=8-х$
$х^2-12х+36=8-х$
Получили квадратное уравнение. Все слагаемые переносим в левую часть уравнения. При переносе слагаемых через знак равно их знаки меняются на противоположные.
$х^2-12х+36-8+х=0$
Приводим подобные слагаемые:
$х^2-11х+28=0$
Найдем корни уравнения через дискриминант:
$D=b^2-4ac=121-4·28=121-112=9=3^2$
$x_{1,2}={-b±√D}/{2a}={11±3}/{2}$
$x_1=7; x_2=4$
Проведем проверку корней, подставив их вместо икса в исходное уравнение
$x_1=7$
$7-6=√{8-7}$
$1=1$, получили верное равенство, следовательно, корень нам подходит.
$x_2=4$
$4-6=√{8-4}$
$-2=2$, получили неверное равенство, следовательно, данный корень посторонний.
Ответ: $7$
Показательными называют такие уравнения, в которых неизвестное содержится в показателе степени.
$a^x=b$
При решении показательных уравнений используются свойства степеней, вспомним некоторые из них:
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
$a^n⋅a^m=a^{n+m}$
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
$a^n:a^m=a^{n-m}$
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
$(a^n)^m=a^{n·m}$
4. При возведении в степень произведения в эту степень возводится каждый множитель
$(a·b)^n=a^n·b^n$
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
$({a}/{b})^n={a^n}/{b^n}$
6. При возведении любого основания в нулевой показатель степени результат равен единице
$a^0=1$
7. Основание в любом отрицательном показателе степени можно представить в виде основания в таком же положительном показателе степени, изменив положение основания относительно черты дроби
$a^{-n}={1}/{a^n}$
${a^{-n}}/{b^{-k}}={b^k}/{a^n}$
8. Радикал (корень) можно представить в виде степени с дробным показателем
$√^n{a^k}=a^{{k}/{n}}$
Показательные уравнения часто сводятся к решению уравнения $a^x=a^m$, где, $а >0, a≠1, x$ — неизвестное. Для решения таких уравнений воспользуемся свойством степеней: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели.
Решить уравнение $25·5^х=1$
Решение:
В левой части уравнения необходимо сделать одну степень с основанием $5$ и в правой части уравнения представить число $1$ в виде степени с основанием $5$
$5^2·5^х=5^0$
При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются
$5^{2+х}=5^0$
Далее проговариваем: степени с одинаковым основанием $(а >0, a≠1)$ равны только тогда, когда равны их показатели
$2+х=0$
$х=-2$
Ответ: $-2$
Решить уравнение $2^{3х+2}-2^{3х-2}=30$
Решение:
Чтобы решить данное уравнение, вынесем степень с наименьшим показателем как общий множитель
$2^{3x+2}-2^{3x-2}=30$
$2^{3x-2}({2^{3x+2}}/{2^{3x-2}}-{2^{3x-2}}/{2^{3x-2}})=30$
$2^{3x-2}(2^{3x+2-(3x-2)}-1)=30$
$2^{3x-2}(2^4-1)=30$
$2^{3x-2}·15=30$
Разделим обе части уравнения на $15$
$2^{3х-2}=2$
$2^{3х-2}=2^1$
$3х-2=1$
$3х=3$
$х=1$
Ответ: $1$
Тип 5 № 26653
Найдите корень уравнения
Аналоги к заданию № 26653: 510382 510401 2857 13685 505143 505164 2859 2861 2863 2865 … Все
Источник: Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1., ЕГЭ — 2017. Основная волна 02.06.2017. Вариант 301 (C часть)., ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург
Классификатор алгебры: Показательные уравнения
Кодификатор ФИПИ/Решу ЕГЭ: 1.4.2 Преобразования выражений, включающих операцию возведения в степень, 2.1.5 Показательные уравнения
В (12) задании ЕГЭ предлагается решить уравнение и выбрать корни, принадлежащие заданному промежутку. За это задание можно получить (2) балла.
Пример:
a) реши уравнение
(x2+4x−2)(43x+1+82x−1−11)=0.
б) Найди все корни этого уравнения, принадлежащие отрезку
[−0,5; 0,5]
.
Алгоритм выполнения задания
1. Определи вид уравнения, выбери метод решения.
2. Реши уравнение, используя соответствующие виду уравнения свойства и правила. Все найденные корни должны принадлежать области определения уравнения.
3. Выбери корни уравнения, принадлежащие указанному промежутку. Обоснуй выбор корней.
4. Запиши все шаги решения на чистовик разборчиво и кратко.
5. Запиши ответ по обоим пунктам.
Если ход решения верный и обоснованно получены верные ответы в обоих пунктах, то решение оценивается в (2) балла. Если верна последовательность всех шагов решения, но допущена описка или вычислительная ошибка, и в результате получены неверные ответы, можно получить (1) балл.
Как решить задание из примера
1.
(x2+4x−2)(43x+1+82x−1−11)=0.
Уравнение является распадающимся,
x∈ℝ
. Произведение равно нулю, когда хотя бы один из множителей равен нулю:
x2+4x−2=0,(1)43x+1+82x−1−11=0.(2)
Нам нужны формулы степеней:
amn=amn;am+n=aman.
2. Решим каждое уравнение отдельно. Уравнение ((1)) является квадратным. Найдём его корни через дискриминант:
x1=−2−6;x2=−2+6.
Уравнение ((2)) является показательным. Приведём степени к одинаковому основанию:
22(3x+1)+23(2x−1)−11=0;
26x+2+26x−3−11=0.
Преобразуем степени, чтобы показатели тоже были равными:
Итак, уравнение имеет три корня
−2−6
,
−2+6
и
12−log236
.
3. Отберём корни уравнения, принадлежащие отрезку
[−0,5; 0,5]
.
4<6<9;2<6<3;−5<−2−6<−4.
Корень
−2−6
не принадлежит отрезку
[−0,5; 0,5]
.
5,76<6<6,25;2,4<6<2,5;0,4<−2+6<0,5.
Корень
−2+6
принадлежит отрезку
[−0,5; 0,5]
.
log22<log23<log24;1<log23<2;−2<−log23<−1;−13<−log236<−16;−0,5<16<12−log236<13<0,5.
Корень
12−log236
принадлежит отрезку
[−0,5; 0,5]
.
4. Перепишем шаги решения в чистовик.
5. Запишем ответ.
Ответ: а)
−2−6
;
−2+6
;
12−log236
; б)
−2+6
;
12−log236
.
Сегодня мы будем тренировать навык решения задания 5 ЕГЭ – найдите корень уравнения. Будем искать корень уравнения. Рассмотрим примеры решения такого рода заданий. Но для начала, давайте вспомним – что значит – найти корень уравнения?
Это значит найти такое, зашифрованное под х число, которое мы подставим вместо x и наше уравнение будет верным равенством.
Например, 3x=9 – это уравнение, а 3.3=9 – это уже верное равенство. То есть в данном случае, мы вместо x подставили число 3 – получили верное выражение или равенство, это означает, что мы решили уравнение, то есть нашли данное число x=3, которое превращает уравнение в верное равенство.
Вот этим мы и займемся – будем находить корень уравнения.
Задание 1 – найдите корень уравнения 21-4x=32
Это показательное уравнение. Оно решается следующим образом – нужно чтобы и слева, и справа от знака “равно” была степень с одинаковым основанием.
Слева у нас основание степени 2, а справа – степени нет вовсе. Но мы знаем, что 32 – это 2 в пятой степени. То есть, 32=25
Таким образом, наше уравнение будет выглядеть так: 21-4х=25
Слева и справа у нас основания степени одинаковы, значит, чтобы у нас было равенство, должны быть равны и показатели степени:
1-4х=5
Получаем обыкновенное уравнение. Решаем обычным способом – все неизвестные оставляем слева, а известные переносим вправо, получим:
-4х=5-1
-4х=4
х=-1.
Делаем проверку: 21-4(-1)=32
25=32
32=32
Мы нашли корень уравнение. Ответ: х=-1.
Самостоятельно найдите корень уравнения в следующих заданиях:
а) 25-х=64
б) 21-3х=128
Задание 2 – найдите корень уравнения 25-x = 1/16
Уравнение решаем аналогично – путем приведения левой и правой частей уравнения к одному основанию степени. В нашем случае – к основанию степени 2.
Используем следующее свойство степени:
По этому свойству мы получим для правой части нашего уравнения:
Тогда наше уравнение запишется в виде:
Если равны основания степени, значит, равны и показатели степени:
5-х=-4
-х=-4-5
х=9
Ответ: х=9.
Сделаем проверку – подставим найденное значение х в исходное уравнение – если мы получим верное равенство, значит, мы решили уравнение правильно.
25-9=1/16
2-4=1/16
1/16=1/16
Мы нашли корень уравнения правильно.
Задание 3 – найдите корень уравнения 
Заметим, что справа у нас стоит 1/8, а 1/8 – это
Тогда наше уравнение запишется в виде:
Если основания степени равны, значит, равны и показатели степени, получим простое уравнение:
3х-12=3
3х=15
х=5
Ответ: х=5. Проверку сделайте самостоятельно.
Задание 4 – найдите корень уравнения log3(15-х)=log32
Это уравнение решается также как и показательное. Нам нужно, чтобы основания логарифмов слева и справа от знака “равно” были одинаковыми. Сейчас они одинаковы, значит, приравниваем те выражения, которые стоят под знаком логарифмов:
15-х=2
-х=2-15
-х=-13
х=13
Ответ: х=13
Задание 5 – найдите корень уравнения log3(3-x)=3
Число 3 – это log327. Чтобы было понятно внизу нижним индексом под знаком логарифма стоит число которое возводится в степень, в нашем случае 3, под знаком логарифма стоит число, которое получилось при возведении в степень – это 27, а сам логарифм – это показатель степени, в которую нужно возвести 3, чтобы получить 27.
Смотрите на картинке:
Таким образом, любое число можно записать в виде логарифма. В данном случае очень удобно записать число 3 в виде логарифма с основанием 3. Получим:
log3(3-x)=log327
Основания логарифмов равны, значит, равны и числа, стоящие под знаком логарифма:
3-х=27
Получим,
-х=27-3
-х=24
х=-24
Сделаем проверку:
log3(3-(-24))=log327
log3(3+24)= log327
log327=log327
3=3
Ответ: x=-24.
Задание 6. Найдите корень уравнения log(x+3)=log2(3x-15).
log2(x+3)=log2(3x-15)
Решение:
x+3=3x-15
x-3x=-3-15
-2x=-18
x=9
Проверка: log2(9+3)=log2(27-15)
log212=log212
Ответ: x=9.
Задание 7. Найдите корень уравнения log2(14-2x)=2log23
log2(14-2x)=2log23
log2(14-2x)=log232
14-2x=32
14-2x=9
-2x=9-14
-2x=-5
x=2,5
Проверка: log2(14-5)=2log23
log29=2log23
log232=2log23
2log23=2log23
Ответ: x=2,5
Подготовьтесь к ЕГЭ и к ОГЭ -посмотрите предыдущие темы Найдите значение выражения и Как решать неравенства .
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Квадратные и линейные уравнения
Линейное уравнение – уравнение, сводящееся к виду (large{ax+b=0}), где (ane
0, b) – числа.
Линейное уравнение всегда имеет единственное решение (x=-dfrac ba).
Квадратное уравнение – уравнение, сводящееся к виду (large{ax^2+bx+c=0}), где (ane
0,b,c) – числа.
Выражение (D=b^2-4ac) называется дискриминантом квадратного уравнения.
Квадратное уравнение может иметь не более двух корней:
(bullet) если (D>0), то оно имеет два различных корня
[x_1=dfrac{-b+sqrt{D}}{2a} quad text{и} quad x_2=dfrac{-b-sqrt{D}}{2a}]
(bullet) если (D=0), то оно имеет один корень (иногда говорят, что два совпадающих)
[x_1=x_2=-dfrac{b}{2a}]
(bullet) если (D<0), то оно не имеет корней.
(blacktriangleright) Теорема Виета для квадратного уравнения:
Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения
[{large{x_1+x_2=-dfrac{b}{a}}}]
а произведение
[{large{x_1cdot x_2=dfrac{c}{a}}}]
(blacktriangleright) Если квадратное уравнение:
(sim) имеет два корня (x_1) и (x_2), то (ax^2+bx+c=a(x-x_1)(x-x_2)).
(sim) имеет один корень (x_1) (иногда говорят, что два совпадающих), то (ax^2+bx+c=a(x-x_1)^2).
(sim) не имеет корней, то квадратный трехчлен (ax^2+bc+c) никогда не может быть равен нулю. Более того, он при всех (x) строго одного знака: либо положителен, либо отрицателен.
(blacktriangleright) Полезные формулы сокращенного умножения:
[begin{aligned}
&x^2-y^2=(x-y)(x+y)\
&(x+y)^2=x^2+2xy+y^2\
&(x-y)^2=x^2-2xy+y^2
end{aligned}]
Задание
1
#305
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (dfrac{2}{9}x = 4dfrac{1}{9}).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Умножим левую и правую часть уравнения на 9. После умножения: (2x = 37), что равносильно (x = 18,5) – подходит по ОДЗ.
Ответ: 18,5
Задание
2
#306
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (-dfrac{4}{3}x = 5dfrac{2}{3}).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Умножим левую и правую часть уравнения на (-3). После умножения: (4x = -17), что равносильно (x = -4,25) – подходит по ОДЗ.
Ответ: -4,25
Задание
3
#310
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (x^2 — 11x + 28 = 0). Если уравнение имеет более одного корня, в ответе укажите больший из них.
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Дискриминант данного уравнения (D = 121 — 28 cdot 4 = 121 — 112 = 9 = 3^2). Корни [x_1 = dfrac{11 + 3}{2} = 7, x_2 = dfrac{11 — 3}{2} = 4] – подходят по ОДЗ. Ответ: (x = 7) – больший корень уравнения.
Ответ: 7
Задание
4
#311
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (2x^2 — 7x + 3 = 0). Если уравнение имеет более одного корня, в ответе укажите меньший из них.
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Дискриминант данного уравнения (D = 49 — 24 = 25 = 5^2). Корни (x_1 = dfrac{7 + 5}{4} = 3, x_2 = dfrac{7 — 5}{4} = 0,5) – подходят по ОДЗ. Ответ: (x = 0,5) – меньший корень уравнения.
Ответ: 0,5
Задание
5
#312
Уровень задания: Равен ЕГЭ
Найдите корень уравнения ((4x + 5)^2 = (4x + 4)^2).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
После упрощения имеем (16x^2 + 40x + 25 = 16x^2 + 32x + 16), что равносильно (8x = -9), откуда (x = -1,125) – подходит по ОДЗ.
Ответ: -1,125
Задание
6
#314
Уровень задания: Равен ЕГЭ
Найдите корень уравнения ((5x + 8)^2 = 160x).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
После упрощения имеем (25x^2 + 80x + 64 = 160x), что равносильно (25x^2 — 80x + 64 = 0), что равносильно ((5x — 8)^2 = 0), что равносильно ((5x — 8)(5x — = 0).
Произведение двух выражений равно нулю в том и только том случае, когда хотя бы одно из них равно 0 и оба выражения не теряют смысл. Отсюда заключаем, что [x = dfrac{8}{5} = 1,6] – единственный корень – подходит по ОДЗ.
Ответ: 1,6
Задание
7
#315
Уровень задания: Равен ЕГЭ
Найдите корень уравнения ((2x + 11)^2 = 88x).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
После упрощения имеем (4x^2 + 44x + 121 = 88x), что равносильно (4x^2 — 44x + 121 = 0), что равносильно ((2x — 11)^2 = 0), что равносильно ((2x — 11)(2x — 11) = 0).
Произведение двух выражений равно нулю в том и только том случае, когда хотя бы одно из них равно 0 и оба выражения не теряют смысл. Отсюда заключаем, что [x = dfrac{11}{2} = 5,5] – единственный корень – подходит по ОДЗ.
Ответ: 5,5
Знакомство школьника с квадратными уравнениями вида (ax²+bx+c=0), где (ane 0), (b), (c) — заданные числа, происходит еще задолго до сдачи ЕГЭ по математике в Москве или любом другом городе РФ, а именно в 8 классе. Несмотря на то, что на изучение материала по данной теме, как правило, отводится немало времени, далеко не все школьники с легкостью решают подобные задачи. Поэтому, готовясь к сдаче выпускного экзамена, школьникам как в Москве, так и в других населенных пунктах РФ необходимо повторить такой раздел алгебры, как квадратные уравнения: в ЕГЭ по математике они обязательно встретятся.
Для того чтобы освежить в памяти основные способы решения подобного задания и способы решения иррациональных уравнений, воспользуйтесь образовательным проектом «Школково». Наши специалисты подготовили для вас в максимально понятной и доступной форме теоретический материал по теме «Квадратные уравнения», подобрали интересные примеры, которые встречаются в ЕГЭ, а также их подробные решения.
Необходимо запомнить
Для решения квадратных уравнений в ЕГЭ по математике следует выучить формулу, по которой вычисляется дискриминант. Она довольная простая: (D=b2−4ac).
Квадратное уравнение, которое вам предстоит решить в ЕГЭ, может иметь не более двух корней. Если вычисленный дискриминант больше 0, то следует использовать следующие формулы:
(x_1=dfrac{-b+sqrt{D}}{2a})
(x_2=dfrac{-b-sqrt{D}}{2a})
Если D = 0, то уравнение имеет один корень (иногда говорят, что 2 равных):
(x_1=x2=dfrac{-b}{2a})
Если дискриминант меньше 0, то уравнение не имеет корней.
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Тема урока: «Подготовка к ЕГЭ. 1 задание.Простейшие
уравнения. Профиль.»
Цель: подготовить к успешной сдаче экзамена по
профильной математике
Структура №1
задания профиль математика простейшие уравнения
1. Линейные,
квадратные, кубические уравнения
2.
Рациональные уравнения
3. Иррациональные
уравнения
4.
Показательные уравнения
5. Логарифмические
уравнения
6. Тригонометрические уравнения
1.Линейные,
квадратные, кубические уравнения
Карточка №1 Линейные |
1. Найдите корень уравнения: Решение. Последовательно получаем: Ответ: 13. Решить самостоятельно 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. |
Карточка №2 Квадратные уравнения |
Найдите корень уравнения Решение. Выполним преобразования, используя формулы
Ответ: 3. Приведём другое решение: Выполним преобразования,
Ответ: 3. Решить задания 1. Решите уравнение 2. Решите уравнение 3. Найдите корень уравнения 4. Найдите корень уравнения: 5. Решите уравнение 6. Решите уравнение 7. Решите уравнение 8. Решите уравнение 9. Решите уравнение 10. Решите уравнение |
Карточка №3 Кубические уравнения |
Найдите корень Решение. Извлекая кубический корень из обеих частей Ответ: −1. Решить самостоятельно 1. Найдите корень уравнения 2. Найдите корень уравнения 3. Найдите корень уравнения 4. Найдите корень уравнения 5. Найдите корень уравнения |
2. Рациональные
уравнения
Карточка №4 |
Найдите корень уравнения: Решение. Избавимся от знаменателя:
Ответ: 14. Решить самостоятельно 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. |
3. Иррациональные
уравнения
Карточка №5 Иррациональные уравнения |
Найдите корень уравнения Решение. Возведем в квадрат: Ответ: 3. Решить самостоятельно 1.Найдите корень уравнения 2.Найдите корень уравнения 3.Найдите корень уравнения: 4.Найдите корень уравнения 5.Найдите корень уравнения 6. Решите уравнение 7. Решите уравнение 8. Решите уравнение 9. Решите 10. Найдите корень уравнения |
4.Показательные
уравнения
Карточка №6 Показательные уравнения |
Найдите корень Решение. Перейдем к одному основанию степени: Ответ: −1. Решить самостоятельно 1. Найдите корень уравнения 2. Найдите корень уравнения 3.Найдите корень уравнения 4.Найдите корень уравнения 5.Найдите корень уравнения 6.Найдите корень уравнения: 7.Найдите решение уравнения: 8. Найдите корень уравнения: 9.Решите уравнение 10.Решите уравнение 11.Найдите корень 12.Найдите корень уравнения |
5.Логарифмические
уравнения
Карточка №7 Логарифмические |
1. Найдите корень уравнения Решение. Последовательно получаем: Ответ: −124. Решить самостоятельно 1.Найдите корень 2.Найдите корень уравнения 3.Найдите корень 4.Найдите корень уравнения 5.Найдите корень уравнения 6.Решите уравнение 7.Решите уравнение 8.Решите 9.Найдите корень уравнения 10.Найдите корень 11.Решите уравнение |
6.Тригонометрические
уравнения
Карточка №8 Тригонометрические уравнения |
1. Найдите корни уравнения: Решение. Последовательно получаем:
Значениям Если Если Значениям Следовательно, наибольшим Ответ: −4. Решить самостоятельно 1. Решите уравнение 2. Решите 3. Решите уравнение |
Домашнее
задание на сайте Решу ЕГЭ профиль до 25.02.22
№44022425
Решение уравнений – навык, который необходим каждому нацеленному на успешную сдачу ЕГЭ и ОГЭ школьнику. Он поможет решить задания №4, 12 и 14 из профильного уровня математики.
Одна из их разновидностей уравнений – степенные уравнения, которые иногда также называют показательными. Основная отличительная особенность – наличие степеней и переменной (х) не в основании степени, а в самом показателе. Как это выглядит:
$$ a^{f(x)}=b^{g(x)}; $$
Где (a) и (b) — некоторые числа, а (f(x)) и (g(x)) — какие-то выражения, зависящие от (x). Не бойтесь – это самый общий вид показательных уравнений. Реальные примеры выглядят как-то так:
$$2^x=8;$$
$$ 2^x=2^{2x+1};$$
$$3^{x^2}=2^{x^2-2x+3};$$
Внимательно посмотрите на приведенные уравнения. В каждом из них присутствует, так называемая, показательная (степенная) функция. При решении необходимо помнить об основных свойствах степени, а также использовать особые правила, помогающие вычислить значение (х). Познакомиться с понятием степени и ее свойствами можно тут и тут.
И вам понадобится умение решать обыкновенные линейные и квадратные уравнения, те, что вы проходили в 7-8 классе. Вот такие:
$$ 7x+2=16;$$
$$x^2-4x+5=0;$$
И так, любое уравнение, в котором вы увидите показательную (степенную) функцию, называется показательным уравнением.
Ура! Теперь знаем, как выглядят показательные уравнения, но толку от этого не очень много. Было бы неплохо научиться их решать. Отличная новость – на наш взгляд показательные уравнения одни из самых простых типов уравнений, по сравнению с логарифмическими, тригонометрическими или иррациональными.
Простейшие показательные уравнения
Давайте начнем с самых простых типов уравнений и разберем сразу несколько примеров:
Пример 1
$$ 2^x=8;$$
Что такое решить уравнение? Это значит, что нужно найти такое число, которое при подстановке в исходное уравнение вместо (х) даст верное равенство. В нашем примере нужно найти такое число, в которое нужно возвести двойку, чтобы получить восемь. Ну это просто:
$$ 2^3=2*2*2=8; $$
Значит, если (х=3), то мы получим верное равенство, а значит мы решили уравнение.
Решим что-нибудь по-сложнее.
Пример 2
$$ 3^{4x-1}=frac{1}{9};$$
Такое уравнение выглядит сложнее. Попробуем преобразовать правую часть уравнения:
$$frac{1}{9}=frac{1}{3^2}=3^{-2};$$
Мы применили свойство отрицательной степени по формуле:
$$ a^{-n}=frac{1}{a^n};$$
Теперь наше уравнение будет выглядеть так:
$$ 3^{4x-1}=3^{-2};$$
Заметим, что слева и справа у нас стоят показательные функции, и там, и там основания одинаковые и равны (3), только вот степени разные – слева степень ((4х-1)), а справа ((-2)). Логично предположить, что если степени у такой конструкции будут равны, при условии, что основания одинаковые, то мы получим верное равенство. Так и поступим:
$$ 4x-1=-2;$$
Такое мы решать умеем, ведь это обыкновенное линейное уравнение.
$$4х=-2+1;$$
$$4x=-1;$$
$$x=-frac{1}{4}.$$
Поздравляю, мы нашли корень нашего показательного уравнения.
Пример 3
$$125^x=25;$$
Попробуем поступить так, как в предыдущем примере – преобразуем левую и правую часть, чтобы слева и справа была показательная функция с одинаковым основанием. Как это сделать? Обращаем внимание, что (125=5*5*5=5^3), а (25=5*5=5^2), подставим:
$$ (5^3)^x=5^2;$$
Воспользуемся одним из свойств степеней ((a^n)^m=a^{n*m}):
$$ 5^{3*x}=5^2;$$
И опять мы получили две показательные функции, у которых одинаковые основания и для того, чтобы равенство выполнялось, необходимо приравнять из степени:
$$ 3*x=2;$$
$$ x=frac{2}{3};$$
И еще один пример:
Пример 4
$$2^x=-4;$$
Те, кто хорошо знает свойства степеней, знают, что показательная функция не может быть отрицательной. Действительно, попробуйте возводить (2) в различную степень, вы никогда не сможете получить отрицательное число.
Внимание! Показательная функция не может быть отрицательной, поэтому, когда вы встречаете примеры на подобии примера 4, то знайте, что такого быть не может. Здесь корней нет, потому что показательная функция всегда положительна.
Теперь давайте разработаем общий метод решения показательных уравнений. И научимся решать более сложные примеры.
Общий метод решения показательных уравнений
Пусть у нас есть вот такой пример:
$$ a^x=b;$$
Где (a,b) какие-то положительные числа. ((a>0, ; b>0)).
Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.
Слева у нас уже стоит (a^x), с этим ничего делать не будем, а вот справа у нас стоит загадочное число (b), которое нужно попытаться представить в виде (b=a^m). Тогда уравнение принимает вид:
$$ a^x=a^m;$$
Раз основания одинаковые, то мы можем просто приравнять степени:
$$x=m.$$
Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:
Пример 5
$$2^x=16;$$
Замечаем, что (16=2*2*2*2=2^4) это степень двойки:
$$2^x=2^4$$
Основания одинаковые, значит можно приравнять степени:
$$x=4.$$
Пример 6
$$5^{-x}=125 Rightarrow 5^{-x}=5*5*5 Rightarrow 5^{-x}=5^3 Rightarrow –x=3 Rightarrow x=-3.$$
Пример 7
$$9^{4x}=81 Rightarrow (3*3)^{4x}=3*3*3*3 Rightarrow(3^2)^{4x}=3^4 Rightarrow 3^{8x}=3^4 Rightarrow 8x=4 Rightarrow x=frac{1}{2}.$$
Здесь мы заметили, что (9=3^2) и (81=3^4) являются степенями (3).
Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:
Пример 8
$$ 3^x=2;$$
(3) и (2) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число (b>0), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице (a>0, ; a neq 1):
$$ b=a^{log_{a}(b)};$$
Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим (2) в виде (3) в какой-то степени, где (a=3), а (b=2):
$$ 2=3^{log_{3}(2)};$$
Подставим данное преобразование в наш пример:
$$3^x=3^{log_{3}(2)};$$
Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:
$$x=log_{3}(2).$$
Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.
Кто забыл, что такое логарифм, можно посмотреть здесь.
Рассмотрим еще несколько аналогичных примеров.
Пример 9
$$ 7^{2x}=5;$$
$$ 7^{2x}=7^{log_{7}(5)};$$
$$2x=log_{7}(5);$$
$$x=frac{1}{2}*log_{7}(5).$$
Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:
$$ x=frac{1}{2}*log_{7}(5)=log_{7}(5^{frac{1}{2}})=log_{7}(sqrt{5});$$
Все эти варианты ответа верные, их можно смело писать в ответ.
И так, мы с вами научились решать любые показательные уравнения вот такого вида: (a^x=b), где (a>0; ; b>0).
Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа (a^x=b), где (a>0; ; b>0). Рассмотрим типы сложных уравнений, которые могут попасться:
Решение показательных уравнений при помощи замены
Рассмотрим уравнение:
Пример 10
$$ 9^x-5*3^x+6=0;$$
Самое первое, что вы должны всегда делать, это пытаться привести все имеющиеся показательные функции к одинаковому основанию.
Здесь это сделать легко, замечаем, что (9=3^2), тогда (9^x=(3^2)^x=3^{2x}=(3^x)^2). Здесь мы воспользовались свойством степеней: ((a^n)^m=a^{n*m}). Подставим:
$$(3^x)^2-5*3^x+6=0;$$
Обратим внимание, что во всем уравнении все (х) «входят» в одинаковую функцию — (3^x). Сделаем замену (t=3^x, ; t>0), так как показательная функция всегда положительна.
$$t^2-5t+6=0;$$
Квадратное уравнение, которое решается через дискриминант:
$$D=5^2-4*6=25-24=1; Rightarrow t_{1}=frac{5+sqrt{1}}{2}=3; Rightarrow t_{2}=frac{5-sqrt{1}}{2}=2;$$
Оба корня больше нуля, значит оба нам подходят. Сделаем обратную замену и уравнение сводится к решению двух простых показательных уравнений:
$$ 3^x=3;$$
$$3^x=3^1;$$
$$x=1.$$
И второй корень:
$$ 3^x=2;$$
$$3^x=3^{log_{3}(2)};$$
$$x=log_{3}(2).$$
Ответ: (x_{1}=1; ; x_{2}=log_{3}(2).)
И еще один пример на замену:
Пример 11
$$3^{4x^2-6x+3}-10*3^{2x^2-3x+1}+3=0;$$
Воспользуемся нашим правилом, что все нужно приводить к одинаковому основанию – а стоп, тут и так у всех показательных функций основание (3). Давайте еще внимательно посмотрим на наш пример, очень похоже на то, что он тоже делается через замену. Но у нас тут нет одинаковых показательных функций, основания то одинаковые, а вот степени отличаются. Преобразуем первое слагаемое. Если быть внимательным, то можно заметить, что в первой степени можно разбить свободный член (3=2+1) и вынести общий множитель (2):
$$ 3^{4x^2-6x+3}=3^{4x^2-6x+2+1}=3^{2(2x^2-3x+1)+1}=3^{2*(2x^2-3x+1)}*3^1=3*(3^{2x^2-3x+1})^2;$$
Подставим в исходное уравнение:
$$3*(3^{2x^2-3x+1})^2-10*3^{2x^2-3x+1}+3=0;$$
Теперь показательные функции одинаковы и можно сделать замену:
$$t=3^{2x^2-3x+1}; ; t>0;$$
$$3*t^2-10t+3=0;$$
$$D=100-36=64; Rightarrow t_{1}=3; t_{2}=frac{1}{3};$$
Обратная замена, и наше уравнение сводится к простейшему:
$$ 3^{2x^2-3x+1}=3;$$
$$ 2x^2-3x+1=1;$$
$$x(2x-3)=0;$$
$$x=0; ; x=frac{3}{2}.$$
И второе значение (t):
$$3^{2x^2-3x+1}=frac{1}{3};$$
$$3^{2x^2-3x+1}=3^{-1};$$
$$2x^2-3x+1=-1;$$
$$2x^2-3x+2=0;$$
$$D=9-16=-7<0;$$
Раз дискриминант получился меньше нуля, то вторая ветка решений нам корней не дает.
Ответ: (x_{1}=0; ; x_{2}=frac{3}{2}.)
Однородные показательные уравнения
Иногда встречаются такие показательные уравнения, в которых не сразу видно, как сделать одинаковые функции, а именно одинаковые основания, чтобы произвести замену. Посмотрим на такой пример:
Пример 12
$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x};$$
Тут у нас две показательные функции с основаниями (7) и (3), и как сделать из них одинаковые основания непонятно. Этот пример решается при помощи деления. Давайте поделим все наша уравнение на (3^x):
$$ 7^{x+1}+3*7^{x}=3^{x+2}+3^{x} ; ; :3^x$$
$$ frac{7^{x+1}}{3^x}+frac{3*7^{x}}{3^x}=frac{3^{x+2}}{3^x}+frac{3^{x}}{3^x};$$
Здесь нам придется воспользоваться свойствами степеней:
$$frac{a^n}{a^m}=a^{n-m};$$
$$ a^n*a^m=a^{n+m};$$
$$ frac{a^n}{b^n}=(frac{a}{b})^n;$$
Разберем каждое слагаемое:
$$ frac{7^{x+1}}{3^x}=frac{7*7^x}{3^x}=7*frac{7^x}{3^x}=7*(frac{7}{3})^x;$$
$$ frac{3*7^{x}}{3^x}=3*frac{7^x}{3^x}=3*(frac{7}{3})^x;$$
$$ frac{3^{x+2}}{3^x}=3^2*frac{3^x}{3^x}=3^2*1=9;$$
$$ frac{3^{x}}{3^x}=1;$$
Теперь подставим получившееся преобразования в исходное уравнение:
$$ 7*(frac{7}{3})^x+3*(frac{7}{3})^x=9+1;$$
Теперь видно, что в нашем уравнении есть одинаковая функция, которую можно убрать в замену (t=(frac{7}{3})^x):
$$7t+3t=10;$$
$$10t=10;$$
$$t=1;$$
Сделаем обратную замену:
$$(frac{7}{3})^x=1;$$
Вспоминаем, что (1=(frac{7}{3})^0):
$$(frac{7}{3})^x=(frac{7}{3})^0;$$
$$x=0.$$
Ответ: (x=0).
И последний пример на замену:
Пример 13
$$2^{x+2}+0,5^{-x-1}+4*2^{x+1}=28;$$
Первым делом нужно сделать так, чтобы все показательные функции были с одинаковым основанием и в идеале с одинаковой степенью. Для этого нам понадобятся формулы для степеней:
$$ a^n*a^m=a^{n+m};$$
$$a^{-n}=frac{1}{a^n};$$
$${(a^n)}^m=a^{n*m};$$
Разберем каждое слагаемое нашего уравнения:
$$2^{x+2}=2^x*2^2=4*2^x;$$
Все десятичные дроби всегда разумно представить в виде обыкновенных дробей. И будьте внимательны — отрицательная степень не имеет никакого отношения к знаку показательной функции!
$$0,5^{-x-1}=0,5^{-(x+1)}={(frac{1}{2})}^{-(x+1)}={(2^{-1})}^{-(x+1)}=2^{x+1}=2^x*2^1=2*2^x;$$
И последнее слагаемое со степенью:
$$ 4*2^{x+1}=4*2^x*2^1=8*2^x;$$
Подставим все наши преобразования в исходное уравнение:
$$4*2^x+2*2^x+8*2^x=28;$$
Теперь можно сделать замену (t=2^x) или можно обойтись без замены, просто приведя подобные слагаемые (вынести общий множитель (2^x)):
$$2^x*(4+2+8)=28;$$
$$14*2^x=28;$$
$$2^x=frac{28}{14}=2;$$
$$2^x=2^1;$$
$$x=1.$$
Ответ: (x=1.)
Особенно стоит подчеркнуть прием, который мы использовали при решении 13-го примера.
Всегда старайтесь избавляться от десятичных дробей. Переводите их в обыкновенные дроби.
И другой тип степенных уравнений, где обычно не нужно делать замену, а необходимо отлично знать все свойства степеней, некоторые из них мы уже обсудили выше. Все про свойства степеней можно посмотреть тут
Пример 14
$$2^{x+1}*5^x=10^{x+1}*5^{x+2};$$
Вот такое уравнение, в котором у нас, во-первых, показательных функции перемножаются, а еще хуже то, что у них у всех разные основания. Катастрофа, а не пример. Но ничего, все не так страшно, как кажется. Внимательно посмотрите на основания: у нас есть в основании (2), (5) и (10). Очевидно, что (10=2*5). Воспользуемся этим и подставим в наше уравнение:
$$2^{x+1}*5^x=(2*5)^{x+1}*5^{x+2};$$
Воспользуемся формулой ((a*b)^n=a^n*b^n):
$$ 2^{x+1}*5^x=2^{x+1}*5^{x+1}*5^{x+2};$$
И перекинем все показательные функции с основанием (2) влево, а с основанием (5) вправо:
$$frac{2^{x+1}}{2^{x+1}}=frac{5^{x+1}*5^{x+2}}{5^x};$$
Сокращаем и воспользуемся формулами (a^n*a^m=a^{n+m}) и (frac{a^n}{a^m}=a^{n-m}):
$$1=frac{5^{x+1+x+2}}{5^x};$$
$$1=frac{5^{2x+3}}{5^x};$$
$$1=5^{2x+3-x};$$
$$1=5^{x+3};$$
$$5^0=5^{x+3};$$
$$x+3=0;$$
$$x=-3.$$
Ответ: (x=-3).
Самая главная идея при решении показательных уравнений – это любыми доступными способами свести все имеющиеся степенные функции к одинаковому основанию. А еще лучше и к одинаковой степени. Вот почему необходимо знать все свойства степеней, без этого решить уравнения будет проблематично.
Как же понять, где какие преобразования использовать? Не бойтесь, это придет с опытом, чем больше примеров решите, тем увереннее будете себя чувствовать на контрольных в школе или на ЕГЭ по профильной математике. Сначала потренируйтесь на простых примерах и постепенно повышайте уровень сложности. Успехов в изучении математики!