Как находить площадь треугольника по клеточкам егэ

Всего: 240    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см х 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1см×1см. Ответ дайте в квадратных сантиметрах.

Источник: Пробный экзамен по математике Санкт-Петербург 2015. Вариант 1.


Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см х 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Источник: Яндекс: Тренировочная работа ЕГЭ по математике. Вариант 1.


Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Источник: Пробный ЕГЭ по математике, Санкт-Петербург, 19.03.2019. Вариант 2


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Источник: ЕГЭ по математике 29.06.2021. Резервная волна. Центр. Вариант 402


Найдите площадь треугольника, изображённого на клетчатой бумаге с размером клетки 1 см × 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.


Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см times 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Источник: Демонстрационная версия ЕГЭ—2018 по математике. Профильный уровень., Демонстрационная версия ЕГЭ—2016 по математике. Профильный уровень., Демонстрационная версия ЕГЭ—2017 по математике. Профильный уровень.

Всего: 240    1–20 | 21–40 | 41–60 | 61–80 …

Рассмотрим задачи,в которых требуется найти площадь треугольника изображённого на клетчатой бумаге.

Начнем с прямоугольных треугольников.

Задача 1

На клетчатой бумаге с размером клетки 1×1 изображен прямоугольный треугольник.

Найти его площадь.

Решение:

Площадь прямоугольного треугольника будем искать с помощью формулы

    [S = frac{1}{2}ab,]

где a и b — катеты.

Длину катетов считаем по клеточкам.

ploshchad-pryamougolnogo-treugolnika-po-risunku1) a=2, b=5,

    [ S = frac{1}{2} cdot 2 cdot 5 = 5. ]

2) a=6, b=3,

    [ S = frac{1}{2} cdot 6 cdot 3 = 9. ]

Задача 2

ploshchad-treugolnika-po-risunkuНа клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найти его площадь.

Решение:

Чаще всего площадь произвольного треугольника, изображённого на клетчатой бумаге, ищут по формуле

    [S = frac{1}{2}ah_a ,]

где a — сторона треугольника, ha — высота, проведённая к этой стороне.

ploshchad-treugolnika-na-kletchatoj-bumagea  и ha вычисляем по клеточкам (одна из этих величин должна лежать на горизонтальной линии, другая — на вертикальной).

1) a=6, ha=4,

    [ S = frac{1}{2}ah_a = frac{1}{2} cdot 6 cdot 4 = 12. ]

2) a=3, ha=5,

    [ S = frac{1}{2}ah_a = frac{1}{2} cdot 3 cdot 5 = 7,5. ]

А как найти площадь, если ни одна из сторон треугольника не лежит на горизонтальной или вертикальной линии клеток?

Иногда площадь треугольника можно найти как разность площадей других фигур.

Задача 3

najti-ploshchad-treugolnika-po-risunku

На клетчатой бумаге с размером клетки 1×1 изображён треугольник.

Найдите его площадь.

najti-ploshchad-treugolnika-na-bumage

Решение:

Обозначим вершины треугольника, площадь которого мы ищем, через A, B и C.

Площадь треугольника ABC можно найти как разность площадей прямоугольника AMNK и треугольников AKC, AMB и CBN:

    [S_{Delta ABC} = S_{AMNK} - S_{Delta AKC} - S_{Delta AMB} - S_{Delta CBN} .]

Площадь прямоугольника найдём по формуле S=ab.

    [ S_{AMNK} = AM cdot AK = 7 cdot 5 = 35. ]

Площади прямоугольных треугольников найдём по формуле

    [ S = frac{1}{2}ab, ]

где a и b — катеты.

    [S_{Delta AKC} = frac{1}{2}AK cdot KC = frac{1}{2} cdot 5 cdot 1 = 2,5;]

    [S_{Delta AMB} = frac{1}{2}AM cdot MB = frac{1}{2} cdot 7 cdot 3 = 10,5;]

    [S_{Delta CBN} = frac{1}{2}CN cdot BN = frac{1}{2} cdot 6 cdot 2 = 6.]

Отсюда

    [S_{Delta ABC} = 35 - 2,5 - 10,5 - 6 = 16.]

Площадь треугольника (задачи на клетчатой бумаге). Готовимся к егэ по математике. Геометрия. Урок 2

Площадь произвольного треугольника равна половине произведения длины его стороны (a) на высоту (h), проведённую к этой стороне: displaystyle S=frac{ah}{2}
На рисунке 1 приведены чертежи некоторых треугольников, у которых обозначены одна из сторон a и высота, проведённая к этой стороне h.
Как правило, удобно брать ту сторону, которая проходит по линиям клетчатой бумаги (или же проходит параллельно осям координат).
lys_ris11

Рис. 1.

Задача 1. На клетчатой бумаге с клетками размером 1 см х 1 см изображён треугольник (см. рис. 2). Найдите его площадь в квадратных сантиметрах.
Решение.
1-й способ.
lys_ris12

Рис. 2.

Площадь произвольного треугольника равна половине произведения длины его стороны (a) на высоту (h), проведённую к этой стороне. Проведём высоту h. Треугольник тупоугольный, поэтому высота проводится вне треугольника.
lys_ris13

Рис. 3.

На рисунке 3 сторона a = 2 см, высота h = 3 см.
displaystyle S=frac{ah}{2}=frac{2cdot 3}{2}=3 см².
Ответ: 3.
Заметим, что так как клетки имеют размер 1 см х 1 см, то площадь в квадратных сантиметрах получится, если мы будем по рисунку считать размер отрезков в клетках. Поэтому единицы длины в этих задачах можно и не писать.
2-й способ.
Достроим треугольник BCM до прямоугольного треугольника MCA (см. рис. 4).
lys_ris14

Рис. 4.

Тогда искомую площадь треугольника BCM можно найти как разность площадей двух прямоугольных треугольников MAC и MAB.
Катеты первого из них равны 3 см и 3 см, катеты второго — Зсм и 1 см.
Площадь прямоугольного треугольника равна половине произведения его катетов, следовательно,
displaystyle S_{MAC}=frac{3cdot 3}{2}=4,5;; S_{MAB}=frac{1cdot 3}{2}=1,5;
displaystyle S_{MBC}=S_{MAC}-S_{MAB}=4,5-1,5=3.
Ответ: 3.

Формула Пика. Рассказ о формуле, при помощи которой можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник). Это формула Пика.

Она секретной не является. Информация о ней в интернете имеется, но многим материал статьи будет крайне полезен. Об этой формуле обычно рассказывается применительно к нахождению площади треугольника. На примере треугольника мы её и рассмотрим.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

ФОРМУЛА ПИКА

Площадь искомой фигуры можно найти по формуле:

Формула Пика

М – количество узлов на границе треугольника (на сторонах и вершинах)

N – количество узлов внутри  треугольника

*Под «узлами» имеется ввиду пересечение линий.

Найдём площадь треугольника:

Отметим узлы:

1 клетка = 1 см

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Ещё пример. Найдём площадь параллелограмма:

Отметим узлы:

M = 18 (обозначены красным)

N = 20 (обозначены синим)

Найдём площадь трапеции:

Отметим узлы:

M = 24 (обозначены красным)

N = 25 (обозначены синим)

Найдём площадь многоугольника:

Отметим узлы:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

Понятно, что находить площадь трапеции, параллелограмма, треугольника проще и быстрее по соответствующим формулам площадей этих фигур. Но знайте, что можно  это делать и таким образом. 

А вот когда дан многоугольник, у которого пять и более углов эта формула работает хорошо.

Теперь взгляните на следующие фигуры:

Это типовые фигуры, в заданиях стоит вопрос о нахождении их площади. Такие или подобные им будут на ЕГЭ. При помощи формулы Пика такие задачи решаются за минуту. Например, найдём площадь фигуры:

Отметим узлы:

M = 11 (обозначены красным)

N = 5 (обозначены синим)

Ответ: 9,5

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см.  Ответ дайте в квадратных сантиметрах.

Посмотреть решение

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Посмотреть решение

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Посмотреть решение

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Посмотреть решение

Конечно, можно и эти «микрофигурки» дробить на более простые фигуры (треугольники, трапеции). Способ решения выбирать вам.

Рассмотрим подход оговоренный в статье «Площадь четырёхугольника. Универсальный способ«.

Найдём площадь фигуры:

Опишем около неё прямоугольник:

Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур:

Ответ: 4,5

В будущем будем рассматривать задания на нахождение площади, связанные с окружностями построенными на листе в клетку, не пропустите! На этом всё. Успехов вам!

С уважением, Александр Крутицких. 

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Площадь треугольника, изображённого на клетчатой бумаге

Рассмотрим задачи,в которых требуется найти площадь треугольника изображённого на клетчатой бумаге.

Начнем с прямоугольных треугольников.

На клетчатой бумаге с размером клетки 1×1 изображен прямоугольный треугольник.

Найти его площадь.

Площадь прямоугольного треугольника будем искать с помощью формулы

где a и b — катеты.

Длину катетов считаем по клеточкам.

1) a=2, b=5,

На клетчатой бумаге с размером клетки 1×1 изображён треугольник. Найти его площадь.

Чаще всего площадь произвольного треугольника, изображённого на клетчатой бумаге, ищут по формуле

где a — сторона треугольника, ha — высота, проведённая к этой стороне.

a и ha вычисляем по клеточкам (одна из этих величин должна лежать на горизонтальной линии, другая — на вертикальной).

А как найти площадь, если ни одна из сторон треугольника не лежит на горизонтальной или вертикальной линии клеток?

Иногда площадь треугольника можно найти как разность площадей других фигур.

На клетчатой бумаге с размером клетки 1×1 изображён треугольник.

Найдите его площадь.

Обозначим вершины треугольника, площадь которого мы ищем, через A, B и C.

Площадь треугольника ABC можно найти как разность площадей прямоугольника AMNK и треугольников AKC, AMB и CBN:

Площади прямоугольных треугольников найдём по формуле

Как найти треугольник по клеткам

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Площадь треугольника равна разности площади большого квадрата, маленького квадрата и трех прямоугольных треугольников, гипотенузы которых являются сторонами исходного треугольника. Поэтому

см 2 .

Приведём другое решение:

Воспользуемся формулой для нахождения площади треугольника

Одна из сторон данного треугольника является диагональю квадрата со стороной 6, а высота, проведённая к этой стороне, является диагональю квадрата со стороной 2. Тогда

Геометрия. Применение формул. Задача 5 Базового ЕГЭ по математике

Чтобы уверенно решать задачи по геометрии — даже такие простые — необходимо выучить основные понятия и формулы.

Это формулы площадей фигур — треугольника (5 формул), параллелограмма, ромба, прямоугольника, произвольного четырехугольника, а также круга. Формулы для длины окружности, длины дуги и площади сектора. Для средней линии треугольника и средней линии трапеции.

Надо знать, что такое центральный и вписанный угол. Знать основные тригонометрические соотношения. В общем, учите основы планиметрии.

Больше полезных формул — в нашем ЕГЭ-Справочнике.

В этой статье — основные типы заданий №5 Базового ЕГЭ по математике. Задачи взяты из Банка заданий ФИПИ.

Вычисление длин отрезков, величин углов и площадей фигур по формулам

1. На клетчатой бумаге с размером клетки изображена трапеция. Найдите длину средней линии этой трапеции.

Средняя линия трапеции равна полусумме её оснований:

2. Найдите величину угла ABC. Ответ дайте в градусах.

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Соединим точки А и С с центром окружности и проведем диаметры через точки А и С. Видим, что величина центрального угла АОС равна Тогда

3. Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на

Проведем из точки В перпендикуляр к прямой ОА. Из прямоугольного треугольника ОВС по теореме Пифагора:

Осталось умножить найденное значение синуса на

4. Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Самый простой способ — воспользоваться формулой площади ромба, выраженной через его диагонали:

, где и — диагонали.

Получим:

5. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Площадь трапеции равна произведению полусуммы оснований на высоту:

Основания нашей трапеции равны 4 и 8, а высота равна боковой стороне (поскольку трапеция прямоугольная), то есть 3 см. Площадь трапеции

Нахождение площадей многоугольников сложной формы

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ и на авторских задачах.

6. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

7. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Многие репетиторы рекомендуют в таких задачах пользоваться формулой Пика. В ней нет необходимости, однако эта формула довольно интересна.

Согласно формуле Пика, площадь многоугольника равна В+Г/2-1

где В — количество узлов внутри многоугольника, а Г — количество узлов на границе многоугольника.

Узлами здесь названы точки, в которых пересекаются линии нашей клетчатой бумаги.

Посмотрим, как решается задача 7 с помощью формулы Пика:

Синим на рисунке отмечены узлы внутри треугольника. Зеленым — узлы на границе.

Аккуратно посчитав те и другие, получим, что В = 9, Г = 5, и площадь фигуры равна S = 9 + 5/2 — 1 = 10,5.

Выбирайте — какой способ вам больше нравится.

8. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки

Такой четырехугольник получится, если от квадрата размером отрезать 2 прямоугольника и 4 треугольника. Найдите их на рисунке.

Площадь каждого из больших треугольников равна

Площадь каждого из маленьких треугольников равна

Тогда площадь четырехугольника

9. Авторская задача. Найдите площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки

На рисунке изображен ромб с вырезанным из него квадратом.

Площадь ромба равна половине произведения его диагоналей.

Площадь вырезанного квадрата равна 4.

Площадь фигуры равна 36 — 4 = 32.

Площадь круга, длина окружности, площадь части круга

Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.

Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.

10. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

11. На клетчатой бумаге нарисован круг площадью 2,8. Найдите площадь закрашенного сектора.

На рисунке изображен сектор, то есть часть круга. Но какая же это часть? Это четверть круга и еще круга, то есть круга.

Значит, нам надо умножить площадь круга на . Получим:

12. На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь закрашенной фигуры.

Площадь фигуры равна разности площадей двух кругов, один из которых расположен внутри другого. По условию, площадь внутреннего круга равна 9. Радиус внешнего круга относится к радиусу внутреннего как 4 к 3. Площадь круга равна , то есть пропорциональна квадрату радиуса. Значит, площадь внешнего круга в раза больше площади внутреннего и равна 16. Тогда площадь фигуры равна 16 — 9 = 7.

Задачи на координатной плоскости

13. Найдите площадь четырехугольника, вершины которого имеют координаты (4;2), (8;4), (6;8), (2;6).

Заметим, что этот четырехугольник — квадрат. Сторона квадрата a является гипотенузой прямоугольного треугольника с катетами, равными 2 и 4. Тогда

14. Найдите площадь четырехугольника, вершины которого имеют координаты

На рисунке изображен параллелограмм (четырехугольник, имеющий две пары параллельных сторон). Площадь параллелограмма равна произведению основания на высоту. Основание равно 2, высота 8, площадь равна 16.

источники:

http://ege.sdamgia.ru/search?search=%D0%BD%D0%B0%D0%B9%D0%B4%D0%B8%D1%82%D0%B5%20%D0%BF%D0%BB%D0%BE%D1%89%D0%B0%D0%B4%D1%8C%20%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0%20%D0%BD%D0%B0%20%D0%BA%D0%BB%D0%B5%D1%82%D1%87%D0%B0%D1%82%D0%BE%D0%B9

http://ege-study.ru/ru/ege/materialy/matematika/zadanie-3-zadachi-na-kletchatoj-bumage-ili-koordinatnoj-ploskosti/

6. Геометрия на плоскости (планиметрия). Часть II


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи на клетчатой бумаге

(blacktriangleright) Помним, что каждая клетка представляет собой квадрат.

(blacktriangleright) В равных прямоугольниках равны диагонали.

(blacktriangleright) Теорема Пифагора: в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

(blacktriangleright) В прямоугольном треугольнике катет, лежащий против угла (30^circ), равен половине гипотенузы.
И наоборот: катет, равный половине гипотенузы, лежит против угла (30^circ) (рис. 1).

(blacktriangleright) Медиана, проведенная к основанию в равнобедренном треугольнике, является высотой и биссектрисой (рис. 2).


Задание
1

#3089

Уровень задания: Равен ЕГЭ

На клетчатой бумаге изображен угол. Найдите его градусную величину.

Обозначим этот угол (ASD). Отметим точку (F) так, чтобы получился прямоугольный (triangle SDF):

Тогда (angle ASD=angle ASF+angle FSD). Заметим, что (angle
ASF=90^circ)
. Заметим также, что (FS=FD), следовательно, (triangle
SDF)
прямоугольный и равнобедренный, значит, его острые углы равны по (45^circ).
Следовательно, [angle ASD=90^circ+45^circ=135^circ.]

Ответ: 135


Задание
2

#3088

Уровень задания: Равен ЕГЭ

На клетчатой бумаге с размером клетки (1times 1) изображен треугольник (ABC). Найдите площадь треугольника (A’B’C), где (A’B’) – средняя линия, параллельная стороне (AB).

Пусть (A’in AC, B’in BC).

По свойству средней линии (triangle ABCsim triangle A’B’C) с коэффициентом подобия, равным (2). Следовательно, их площади относятся как коэффициент подобия в квадрате, то есть [dfrac{S_{ABC}}{S_{A’B’C}}=4] Высота (triangle ABC), опущенная из (C), равна (2), (AB=7). Следовательно, (S_{ABC}=frac12cdot 2cdot 7=7). Тогда [S_{A’B’C}=dfrac74=1,75.]

Ответ: 1,75


Задание
3

#3087

Уровень задания: Равен ЕГЭ

На клетчатой бумаге с размером клетки (1times 1) изображен треугольник (ABC). Найдите длину средней линии, параллельной стороне (AB).

Длина средней линии треугольника, параллельной стороне (AB), равна (frac12AB). Так как (AB=7), то средняя линия равна (3,5).

Ответ: 3,5


Задание
4

#3086

Уровень задания: Равен ЕГЭ

На клетчатой бумаге изображен треугольник. Найдите радиус вписанной в него окружности, если сторона одной клетки равна (3).

Будем искать радиус вписанной окружности по формуле (S=pcdot r), где (S) – площадь, (p) – полупериметр.
Заметим, что треугольник равнобедренный: (AB=BC.)

Так как длина стороны клетки равна (3), то (AH=12, BH=9), следовательно, (AB=sqrt{AH^2+BH^2}=15.) Тогда [dfrac12cdot BHcdot AC=dfrac{AB+BC+AC}2cdot r quadRightarrowquad
r=4.]

Заметим, что в задачах подобного типа можно вычислять все длины, как будто длина стороны клетки равна (1), а затем умножать полученный ответ на (3). Если бы длина одной клетки была равна (1), то (AH=4, BH=3), (AB=5) и (r=frac43). Тогда после умножения на (3) также получили бы (r=4). При решении задачи таким способом вычисления будут легче.

Ответ: 4


Задание
5

#297

Уровень задания: Равен ЕГЭ

На клетчатой бумаге с клетками размером (1)мм (times 1)мм нарисована трапеция. Найдите её площадь. Ответ дайте в квадратных миллиметрах.

Площадь трапеции равна произведению полусуммы оснований на высоту. Площадь нарисованной трапеции есть (0,5cdot (3 text{мм} + 4 text{мм})cdot 3 text{мм} = 10,5)мм(^2).

Ответ: 10,5


Задание
6

#298

Уровень задания: Равен ЕГЭ

На клетчатой бумаге с клетками размером (1)мм (times 1)мм нарисован треугольник. Найдите его площадь. Ответ дайте в квадратных миллиметрах.

Площадь треугольника равна половине произведения основания на высоту, проведенную к этому основанию, тогда площадь нарисованного треугольника есть (0,5cdot 3)мм (cdot 4)мм (= 6)мм(^2).

Ответ: 6


Задание
7

#299

Уровень задания: Равен ЕГЭ

На клетчатой бумаге с клетками размером (1)мм (times 1)мм нарисован четырёхугольник. Найдите его площадь. Ответ дайте в квадратных миллиметрах.

У данного четырёхугольника две стороны параллельны, а две другие не параллельны, следовательно, это трапеция. Площадь трапеции равна произведению полусуммы оснований на высоту. Площадь нарисованной трапеции равна (0,5(2 text{мм} + 3 text{мм})cdot 4 text{мм} = 10) мм(^2).

Ответ: 10

Если выпускник готовится к сдаче ЕГЭ по математике и при этом рассчитывает на получение конкурентных баллов, ему непременно стоит освоить принцип решения задач на клетчатой бумаге. Подобные планиметрические задания каждый год включаются в программу аттестационного испытания. Таким образом, справляться с задачами ЕГЭ на клетчатой бумаге должны все учащиеся, независимо от уровня их подготовки.

Полезная информация

Задания ЕГЭ на клетчатой бумаге часто решаются гораздо проще, чем задачи, для выполнения которых требуется применение аналитических методов. Чаще всего в подобных упражнениях необходимо найти площадь фигуры. Решить такие задачи можно, вспомнив основные теоремы и свойства трапеции, треугольника, шестиугольника и т. д.

Как подготовиться к экзамену?

Если задания ЕГЭ на клетчатой бумаге вызывают у вас трудности, обратитесь к образовательному порталу «Школково». С нами вы сможете повторить материал по темам, которые являются для вас сложными, например, векторы на координатной плоскости и таким образом восполнить пробелы в знаниях. В разделе «Теоретическая справка» представлена вся базовая информация. Ее наши специалисты подготовили и изложили в максимально доступной форме на основе богатого практического опыта.

Освоить принцип решения задач на клетчатой бумаге помогут упражнения, представленные в разделе «Каталог». Мы подготовили простые и более сложные задания. Тренироваться в их выполнении учащиеся из Москвы и других российских городов могут в онлайн-режиме.

Справившись с заданием, выпускники имеют возможность сохранить его в разделе «Избранное». Это позволит в дальнейшем вернуться к нему и, к примеру, обсудить алгоритм его решения со школьным преподавателем. База заданий на сайте «Школково» регулярно обновляется.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

23
Дек 2011

Задание 03 (2016)

Задание B4 (№ 27548)

Найдите площадь треугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

 Решение.

Для примера я специально выбрала задачу, в которой не очевидно, какие формулы нужно применять для нахождения площади. Поступим следующим образом: «заключим» данный треугольник  в прямоугольник АВТК.

 По условию задачи нам надо найти площадь треугольника АСМ. Для этого надо из площади прямоугольника АВТК вычесть площади прямоугольных треугольников АВС, СТМ, АМК.

Вспомним формулы:

площадь прямоугольного треугольника равна половине произведения катетов.

S   ∆ АВС=АСxАВ/2 

площадь прямоугольника равна произведению его сторон,

S ABCD=ABxBC

Итак, площадь прямоугольника АВТК равна (считаем клеточки) 5х5=25

S ∆АВС =5х2/2=5

S ∆АМК =5х2/2=5

S  ∆СТМ=3х3/2=4,5

Площадь треугольника АСМ равна 25-5-5-4,5=10,5.

Ответ: 10,5 

Этот прием вычисления площади заштрихованной фигуры с помощью вычисления площадей прямоугольника, в который можно заключить фигуру, и образовавшихся прямоугольных треугольников, можно применять при решении подобных заданий В5.

Вероятно, Ваш браузер не поддерживается. Попробуйте скачать

Firefox

или

Chrome

Задание В4 (2015): учимся находить площадь

|
Отзывов (2)
| Метки: решение задания В3

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Как находить площадь поверхности многогранника в егэ
  • Как находить объем многогранника егэ
  • Как находить наименьшее значение функции на отрезке егэ
  • Как находить корень уравнения 11 класс егэ
  • Как находить деепричастный оборот в 8 задании егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии