Как найти объем фигуры егэ

Каталог заданий
Задания 2. Стереометрия. Объем составного многогранника


Пройти тестирование по 10 заданиям
Пройти тестирование по всем заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

Тип 2 № 27044

Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).

Аналоги к заданию № 27044: 4893 4903 4895 4897 4899 4901 Все

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

1 комментарий · Сообщить об ошибке · Помощь


2

Тип 2 № 27117

Найдите объем пространственного креста, изображенного на рисунке и составленного из единичных кубов.

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

1 комментарий · Сообщить об ошибке · Помощь


3

Тип 2 № 27187

Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Аналоги к заданию № 27187: 25531 25539 25533 25535 25537 Все

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


4

Тип 2 № 27188

Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Аналоги к заданию № 27188: 25551 25559 25553 25555 25557 Все

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь


5

Тип 2 № 27189

Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Аналоги к заданию № 27189: 25571 25579 25573 25575 25577 Все

Кодификатор ФИПИ/Решу ЕГЭ: 5.5.7 Объём куба, прямоугольного параллелепипеда, пирамиды, призмы

Решение

·

·

Курс Д. Д. Гущина

·

Сообщить об ошибке · Помощь

Пройти тестирование по этим заданиям

Объем правильной треугольной пирамиды

Пусть сторона основания равна ( displaystyle a), а боковое ребро равно ( displaystyle b). Нужно найти ( displaystyle {{S}_{осн}}) и ( displaystyle H).

( displaystyle {{S}_{осн}}) – это площадь правильного треугольника ( displaystyle ABC).

Вспомним, как искать эту площадь. Используем формулу площади:

( displaystyle S=frac{1}{2}abcdot sin gamma ).

У нас «( displaystyle a)» – это ( displaystyle a), а «( displaystyle b)» – это тоже ( displaystyle a), а ( displaystyle sin gamma =sin 60{}^circ =frac{sqrt{3}}{2}).

Значит, ( displaystyle {{S}_{ABC}}=frac{1}{2}{{a}^{2}}frac{sqrt{3}}{2}=frac{{{a}^{2}}sqrt{3}}{4}).

Теперь найдем ( displaystyle H).

По теореме Пифагора для ( displaystyle Delta SOC)

( displaystyle {{H}^{2}}={{b}^{2}}-O{{C}^{2}}).

Чему же равно ( displaystyle OC)? Это радиус описанной окружности в ( displaystyle Delta ABC), потому что пирамидаправильная и, значит, ( displaystyle O) – центр ( displaystyle Delta ABC).

Найдем ( displaystyle OC) (Подробнее смотри в теме «Правильный треугольник»).

( displaystyle OC=frac{2}{3}CK), так как ( displaystyle O) – точка пересечения и медиан тоже.

( displaystyle C{{K}^{2}}=A{{C}^{2}}-A{{K}^{2}}) (теорема Пифагора для ( displaystyle Delta ACK))

( displaystyle C{{K}^{2}}-{{a}^{2}}-frac{{{a}^{2}}}{4}=frac{3{{a}^{2}}}{4}); ( displaystyle CK=frac{asqrt{3}}{2})

Значит, ( displaystyle OC=frac{2}{3}cdot frac{asqrt{3}}{2}=frac{asqrt{3}}{3})

Подставим ( displaystyle OC) в формулу для ( displaystyle H).

( displaystyle {{H}^{2}}={{b}^{2}}-O{{C}^{2}}={{b}^{2}}-{{left( frac{asqrt{3}}{3} right)}^{2}}={{b}^{2}}-frac{{{a}^{2}}}{3})

И подставим все в формулу объема:

( displaystyle V=frac{1}{3}{{S}_{ABC}}cdot H=frac{1}{3}cdot frac{{{a}^{2}}sqrt{3}}{4}cdot sqrt{{{b}^{2}}-frac{{{a}^{2}}}{3}})

( displaystyle V=frac{{{a}^{2}}sqrt{3}}{12}sqrt{{{b}^{2}}-frac{{{a}^{2}}}{3}}).

Внимание: если у тебя правильный тетраэдр (т.е. ( displaystyle b=a)), то формула получается такой:

( displaystyle V=frac{{{a}^{3}}}{6sqrt{2}}).

8. Геометрия в пространстве (стереометрия)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Вычисление объемов фигур


Задание
1

#3043

Уровень задания: Равен ЕГЭ

Радиус первого шара в (5) раз больше радиуса второго шара. Во сколько раз площадь поверхности второго шара меньше площади поверхности первого шара?

Площадь поверхности шара радиуса (R) ищется по формуле (S=4pi R^2). Следовательно, площадь поверхности первого шара относится к площади поверхности второго шара как [dfrac{S_1}{S_2}=dfrac{4pi , R_1^2}{4pi , R_2^2}] Так как радиус первого шара больше радиуса второго шара в 5 раз, то (R_1=5R_2). Следовательно, [dfrac{S_1}{S_2}=dfrac{(5R_2)^2}{R_2^2}=25.] Следовательно, площадь поверхности первого шара в 25 раз больше площади поверхности второго, значит, площадь поверхности второго в 25 раз меньше.

Ответ: 25


Задание
2

#3046

Уровень задания: Равен ЕГЭ

Даны два конуса. Радиус второго конуса в (3) раза больше радиуса первого конуса, а высота второго конуса в (6) раз меньше высоты первого конуса. Найдите объем первого конуса, если объем второго конуса равен (18).

Объем конуса с высотой (h) и радиусом основания (R) вычисляется по формуле (V=frac13pi R^2h). Следовательно, объем первого конуса относится к объему второго конуса как [dfrac{V_1}{18}=dfrac{V_1}{V_2}=
dfrac{frac13pi ,R_1^2,h_1}{frac13 pi
,R_2^2,h_2}=left(dfrac{R_1}{R_2}right)^2cdot
dfrac{h_1}{h_2}]
Так как радиус второго в 3 раза больше радиуса первого, то (R_2=3R_1). Так как высота второго в 6 раз меньше высоты первого, то (h_1=6h_2). Следовательно, [dfrac{V_1}{18}=left(dfrac{R_1}{3R_1}right)^2cdot dfrac{6h_2}{h_2}=
dfrac19cdot 6=dfrac23 quadRightarrowquad V_1=dfrac23cdot
18=12.]

Ответ: 12


Задание
3

#3048

Уровень задания: Равен ЕГЭ

Даны два конуса: (K_1) и (K_2). Площадь полной поверхности (K_1) относится к площади полной поверхности (K_2) как (4:1). Известно, что радиус (K_1) в 4 раза больше образующей (K_1) и в 2 раза больше радиуса (K_2). Найдите отношение образующей (K_2) к образующей (K_1).

Площадь полной поверхности конуса с образующей (l) и радиусом основания (R) ищется по формуле (S=pi R (R+l)). Тогда площадь полной поверхности (K_1) относится к площади полной поверхности (K_2) как [dfrac41=dfrac{pi ,R_1cdot (R_1+l_1)}{pi , R_2cdot (R_2+l_2)}] Из условия следует, что (R_1=4l_1), (R_2=frac12R_1=2l_1), следовательно, [dfrac41=dfrac{4l_1cdot (4l_1+l_1)}{2l_1cdot (2l_1+l_2)}
quadRightarrowquad dfrac{l_2}{l_1}=dfrac12=0,5]

Ответ: 0,5


Задание
4

#3044

Уровень задания: Равен ЕГЭ

Во сколько раз радиус первого шара больше радиуса второго шара, если объем первого шара в (343) раза больше объема второго шара?

Объем шара радиуса (R) ищется по формуле (V=dfrac43 pi R^3). Следовательно, объем первого шара относится к объему второго как [dfrac{343}1=dfrac{V_1}{V_2}=dfrac{frac43 pi , R_1^3}{frac43 pi , R_2^3}=
left(dfrac{R_1}{R_2}right)^3 quadRightarrowquad
dfrac{R_1}{R_2}=sqrt[3]{343}=7.]
Следовательно, радиус первого шара в 7 раз больше радиуса второго шара.

Ответ: 7


Задание
5

#3051

Уровень задания: Равен ЕГЭ

Объем первого прямоугольного параллелепипеда равен 105. Найдите объем второго прямоугольного параллелепипеда, если известно, что высота первого параллелепипеда в 7 раз больше высоты второго, ширина второго в 2 раза больше ширины первого, а длина первого в 3 раза больше длины второго.

Пусть буквы (a), (b) и (c) обозначают высоту, ширину и длину соответственно. Объем прямоугольного параллелепипеда ищется по формуле (V=abc). Следовательно, объем первого параллелепипеда относится к объему второго как [dfrac{105}{V_2}=dfrac{V_1}{V_2}=dfrac{a_1b_1c_1}{a_2b_2c_2}] Из условия следует, что (a_1=7a_2), (b_2=2b_1), (c_1=3c_2). Тогда [dfrac{105}{V_2}=dfrac{7a_2cdot b_1cdot 3c_2}{a_2cdot 2b_1cdot c_2}=
dfrac{7cdot 3}2 quadRightarrowquad V_2=dfrac{105cdot
2}{21}=10.]

Ответ: 10


Задание
6

#3049

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности первого цилиндра равна (16). Найдите площадь боковой поверхности второго цилиндра, если его радиус в 4 раза больше радиуса первого, а высота в 5 раз меньше высоты первого цилиндра.

Площадь боковой поверхности цилиндра с высотой (H) и радиусом основания (R) ищется по формуле (S=2pi RH). Тогда площадь бок. поверхности первого цилиндра относится к площади бок. поверхности второго как [dfrac{16}{S_2}=dfrac{S_1}{S_2}=dfrac{2pi ,R_1,H_1}{2pi ,R_2,H_2}=
dfrac{R_1}{R_2}cdot dfrac{H_1}{H_2}]
Из условия следует, что (R_2=4R_1), (H_1=5H_2), значит, [dfrac{16}{S_2}=dfrac{R_1}{4R_1}cdot dfrac{5H_2}{H_2}=
dfrac14cdot 5=dfrac54]
Следовательно, [S_2=dfrac{16cdot 4}5=12,8.]

Ответ: 12,8


Задание
7

#3047

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности первого конуса относится к площади боковой поверхности второго конуса как (3:7). Найдите отношение образующей первого конуса к образующей второго конуса, если радиус первого конуса относится к радиусу второго как (15:7).

Площадь боковой поверхности конуса с образующей (l) и радиусом основания (R) ищется по формуле (S=pi Rl). Тогда площадь бок. поверхности первого конуса относится к площади бок. поверхности второго как [dfrac 37=dfrac{S_1}{S_2}=dfrac{pi R_1,l_1}{pi R_2,l_2}] Так как радиус первого конуса относится к радиусу второго как (15:7), то есть (frac{R_1}{R_2}=frac{15}7), то [dfrac37=dfrac {15}7cdot dfrac{l_1}{l_2} quadRightarrowquad
dfrac{l_1}{l_2}=dfrac37cdot dfrac7{15}=dfrac15=0,2.]

Ответ: 0,2

Во время подготовки к сдаче ЕГЭ по математике повторение базовых формул из школьного курса геометрии в пространстве (стереометрии), в том числе и для вычисления объемов фигур, является одним из основных этапов. И хотя на изучение этого раздела отводится достаточно большое количество времени в рамках учебной программы, многим выпускникам требуется освежить в памяти основной материал.

Понимая, как осуществляется вычисление площадей объемных фигур, учащиеся значительно повышают свои шансы на получение достойных баллов по итогам сдачи ЕГЭ.

Базовая информация

Объем геометрической фигуры — это количественная характеристика пространства, которое занимает тело. Она определяется его формой и размерами.
Чтобы задачи на вычисление объемов геометрических фигур не вызывали затруднений, рекомендуем освежить в памяти основные формулы.

  • Объем куба равняется кубу длины его грани.
  • Для его расчета используется формула: V = a3, где V — объем куба,
    a — длина его грани.

  • Объем призмы равняется произведению площади основания фигуры на высоту.
    Чтобы его рассчитать, воспользуйтесь следующий формулой: V = So h, где V — объем призмы, So — площадь ее основания, h — ее высота.
  • Объем прямоугольного параллелепипеда равняется произведению его длины, ширины и высоты.
    Формула для его расчета: V = a · b · h, где a — длина,
    b — ширина, h — высота.
  • Объем пирамиды равняется трети от произведения площади ее основания на высоту.
  • Рассчитать его можно по формуле:

    V =
    1/3
    So· h ,

    где V — объем пирамиды, So — площадь основания пирамиды, h — длина высоты пирамиды.

  • Объем цилиндра равняется произведению площади его основания на высоту.
    Формулы для его расчета:
  • V =

    π R2 h

    V =

    So h

Где V — объем цилиндра, So — площадь основания цилиндра, R — радиус цилиндра, h — высота цилиндра, π = 3.141592.

Как сделать процесс подготовки к аттестационному испытанию более легким и эффективным?

Наш образовательный портал предлагает выстроить занятия по-новому. Переходя от простого к сложному, выпускники смогут определить непонятные для себя темы и улучшить собственные знания.

Весь базовый материал по теме «Вычисление площадей и объемов фигур» собран в разделе «Теоретическая справка». Освежив в памяти эту информацию, учащиеся смогут попрактиковаться в решении задач. Большая подборка упражнений как простого, так и экспертного уровня представлена в разделе «Каталог». База заданий регулярно дополняется.

Решать задачи на вычисление объемов фигур или на построение сечения геометрических фигур школьники могут в режиме онлайн. Функционал образовательного сайта «Школково» позволяет сохранять упражнения в разделе «Избранное». Благодаря этому учащиеся смогут вернуться к задаче необходимое количество раз и обсудить ход ее решения со школьным учителем или репетитором.

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ

Многогранники

Многогранник – это поверхность, составленная из многоугольников, ограничивающая некоторое геометрическое тело.

В данной теме мы рассмотрим составные многогранники (многогранники, состоящие обычно из нескольких параллелепипедов).

Объемы различных многогранников:

  • Призма $V=S_{осн}·h$
  • Пирамида $V={1}/{3}S_{осн}·h$
  • Параллелепипед $V=a·b·c$, где $a, b$ и $c$ — длина, ширина и высота.
  • Куб $V=а^3$, где $а$ — сторона куба

Задачи на нахождение объема составного многогранника:

  • Первый способ.
  1. Составной многогранник надо достроить до полного параллелепипеда или куба.
  2. Найти объем параллелепипеда.
  3. Найти объем лишней части фигуры.
  4. Вычесть из объема параллелепипеда объем лишней части.

Пример:

Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).

Решение:

1. Достроим составной многогранник до параллелепипеда.

Найдем его объем. Для этого перемножим все три измерения параллелепипеда:

$V=10·9·4=360$

2. Найдем объем лишнего маленького параллелепипеда:

Его длина равна $9-4=5$

Ширина равна $4$

Высота равна $7$

$V=7·4·5=140$

3. Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры:

$V=360-140=220$

Ответ: $220$

  • Второй способ
  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

Пример:

Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Представим данный многогранник как прямую призму с высотой равной $12$.

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

$P_{осн}=8+6+6+2+2+4=28$

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

$S_1=6·6=36$

$S_2=2·4=8$

$S_осн=36+8=44$

Далее подставим все данные в формулу и найдем площадь поверхности многогранника

$S_{полн.пов.}=28·12+2·44=336+88=424$

Ответ: $424$

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Задачи на нахождение расстояния между точками составного многогранника.

В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.

Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Задачи на рассмотрение подобия фигур.

При увеличении всех линейных размеров многогранника в $k$ раз, площадь его поверхности увеличится в $k^2$ раз.

При увеличении всех линейных размеров многогранника в $k$ раз, его объём увеличится в $k^3$ раз.

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Как называется экзамен в 9 классе гиа или огэ
  • Как найти наименьшее значение функции по уравнению егэ
  • Как называется экзамен в 9 классе в феврале
  • Как найти наименьшее значение функции на отрезке 11 задание егэ
  • Как называется экзамен в 9 классе в америке

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии