Говорят, что задание 18 Профильного ЕГЭ по математике (на числа и их свойства) решить невозможно. Но это не так. Можно научиться! Можно сделать первый шаг – прочитать эту статью и узнать о секретах решения задачи 18.
Еще говорят, что это задача «на смекалку». Но и это не так. Дело не в загадочной «смекалке», а в знании определенных приемов, ключиков, хитрых инструментов. Некоторые из них вы сейчас увидите. Пусть это будет первое знакомство с нестандартными, ни на что не похожими задачами на числа и их свойства.
4. Маша и Наташа делают фотографии. Каждый день каждая девочка делает на одну фотографию больше, чем в предыдущий день. В конце Наташа сделала на 935 фотографий больше, чем Маша.
а) Могло ли это произойти за 5 дней?
б) Могло ли это произойти за 9 дней?
в) Какое максимальное количество фотографий могла сделать Наташа, если Маша в последний день сделала меньше 50 фотографий?
Пусть в первый день Маша делает х фотографий, а Наташа у фотографий.
На второй день: Маша , а Наташа
фотографию.
В n-ный день Маша сделает , а Наташа
фотографию.
По условию, число фотографий, которые ежедневно делает Маша, образует арифметическую прогрессию с разностью 1. Число Наташиных фотографий также образует арифметическую прогрессию. Вспомним формулу суммы арифметической прогрессии:
За n дней Маша сделает , а Наташа
фотографий. Разность этих величин
Мы получили, что .
а) Случай n = 5 возможен. Это значит, что то . Каждый день Наташа делала на 187 фотографий больше, чем Маша.
б) Случай n = 9 невозможен. Уравнение не имеет целых решений, поскольку 935 не делится на 9.
Это один из приемов решения нестандартных задач. Часто мы получаем уравнение с двумя (тремя, четырьмя…) переменными. Помогает то, что эти переменные – натуральные. Мы внимательно смотрим на полученное уравнение. Если его левая часть положительна, то и правая должна быть положительна. Если левая четна, то и правая должна быть четна. Если левая часть кратна 9, то и правая часть должна быть кратна 9.
в) В последний день Маша сделала меньше 50 фотографий.
Еще один лайфхак. В задачах на числа и их свойства строгие неравенства лучше заменять нестрогими:
.
Найдем, какое максимальное количество фотографий могла при этом сделать Наташа.
У нас есть единственное уравнение:
. Поскольку
– целое, n должно быть делителем числа 935. Разложим 935 на множители: 935 = 5∙11∙17.
Числа 1, 5, 11, 17, 55, 85, 187, 935 – делители числа 935.
При этом невозможно, поскольку по условию
.
Составим таблицу для значений n, равных 1, 5, 11 и 17.
Количество фотографий,сделанных Наташей за |
||||
---|---|---|---|---|
1 | 935 | |||
5 | 187 | |||
11 | 85 | |||
17 | 55 |
Количество фотографий, которые могла сделать Наташа, не превышает 1632. Если , то
.
Ответ: 1632.
Посмотрите, как мы действовали. Сначала сделали «заготовку» для всех трех пунктов. Да, такой прием тоже часто применяется в нестандартных задачах.
Получили уравнение . Из одного этого уравнения (как в сказке про суп из топора) мы получаем всё, что нам нужно. В пункте (в) есть перебор вариантов, но не хаотичный, а умный. Иначе перебирать варианты можно бесконечно.
Вот еще одна задача на числа и их свойства:
2. Группу школьников нужно перевезти из летнего лагеря одним из двух способов: либо двумя автобусами типа A за несколько рейсов, либо тремя автобусами типа В за несколько рейсов, причём в этом случае число рейсов каждого автобуса типа B будет на один меньше, чем рейсов каждого автобуса типа А. В каждом из случаев автобусы заполняются полностью. Какое максимальное количество школьников можно перевезти при указанных условиях, если в автобус типа B входит на 7 человек
меньше, чем в автобус типа A?
Помните, как мы решали текстовые задачи? Мы записывали данные задачи в таблицу. Сделаем так же.
Тип автобуса | Сколько автобусов | Сколько рейсов | Сколько человек в автобусе |
---|---|---|---|
По условию, количество школьников, которое надо перевезти, одно и то же.
Оно равно . Отсюда
.
Выразим одну из переменных через другую:
Мы видим, что переменная n и в числителе, и в знаменателе дроби. Оценить m трудно, правда? Чтобы проще было это сделать, выделим в дроби целую часть.
Еще один прием решения нестандартных задач – выделение целой части. Это помогает сделать оценку какой-либо величины.
.
Поскольку m – натуральное число (количество школьников в автобусе типа В), выражение в правой части также должно быть целым положительным. Значит, 42 делится на без остатка.
Выпишем делители числа 42. Это 1; 2; 3; 6: 7; 14; 21; 42.
Заполним таблицу. Значения m вычисляем по формуле , а общее количество школьников – как
.
Общее количество школьников | |||
---|---|---|---|
1 | 4 | 56 | 504 |
2 | 5 | 35 | 420 |
3 | 6 | 28 | 420 |
6 | 9 | 21 | 504 |
7 | 10 | 20 | 540 |
14 | 17 | 17 | 816 |
21 | 24 | 16 | 1104 |
42 | 45 | 15 | 1980 |
Наибольшее количество школьников, которое можно перевезти в условиях задачи, равно 1980.
Конечно, мы выбирали довольно простые задачи. И конечно, есть и другие приемы их решения.
Например, метод «Оценка плюс пример». Мы разбираем множество нестандартных задач на наших интенсивах в ЕГЭ-Студии, а также на Онлайн-курсе.
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Профильный ЕГЭ по математике, задание 18. Секреты решения» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.03.2023
Мы знаем, что в ЕГЭ по математике вторая часть кажется значительно сложнее первой. Но особенно много вопросов вызывает задание №18. Многие думают, что решить его под силам только олимпиадникам.
Но так ли это?
Давай попробуем разобраться, почему эта задача кажется такой необычной и сложной. А еще разберемся, как ее решать!
Формат задачи
По формату задача абсолютно стандартная. Она состоит из нескольких пунктов, за каждый из которых можно получить баллы. Давай посмотрим подробнее:
Пункт А
В этой части задачи в большинстве случаев надо дать ответ на вопрос о возможности или невозможности какой-то ситуации. Если ты отвечаешь, что ситуация возможна, значит, ты можешь подтвердить ее каким-то примером.
Кстати, чаще всего эта часть решается довольно легко. Найти пример не составит труда.
Главное — не торопиться и внимательно прочитать условие задачи!
Пункт Б
Этот пункт очень схож с пунктом А. Но очень часто решение пункта Б сводится к тому, что ситуация невозможна. И тебе остается только это доказать. Но не забудь, что невозможность ситуации доказывается в общем виде, а не на конкретном примере.
А как доказать? Обычно такое доказывается с помощью рассмотрения оценок, делимостей, ограничений и т.д.
Но это только звучит сложно и страшно. Если немного потренироваться, ты научишься очень быстро решать такие задачи.
Пункт В
Последний пункт чуть-чуть посложнее, но и получить за него можно 2 балла! С наибольшей вероятностью в пункте В нужно будет найти наименьшее или наибольшее значение величины, связанной с условием задачи.
Тебе нужно будет сделать оценку на искомую величину и привести пример, когда эта оценка выполняется. За каждый правильно выполненный шаг ты получишь по 1 баллу.
Алгоритм решения задачи
К сожалению, эту задачу не получится решить, подобрав типовой алгоритм. Тут придется поразмышлять. Но от этого интереснее!
Мы подготовили для тебя подборку тем, которые пригодятся тебе для решения №18.
Разбирая задание №18, ты потренируешь свой мозг и научишься решать нестандартные задачи.
Если ты переживаешь, оставь эту задачку напоследок. Решишь ее, когда останется время.
Ну а раз ты здесь, значит, ты хочешь получить высокие баллы и максимально в этом заинтересован!
И мы знаем, что у тебя все получится!
2022-03-21 17:59
ЕГЭ
Математика
16 февраля 2022
В закладки
Обсудить
Жалоба
Задача, связанная со свойствами делимости целых чисел, логическим перебором.
Задание олимпиадного типа, рассчитанное на сильных учащихся. Для того чтобы продвинуться в его решении, не требуется никаких специальных знаний, выходящих за рамки стандарта математического образования, однако необходимо проявить определённый уровень математической культуры, логического мышления, который формируется при решении задач профильного уровня на протяжении всего обучения в школе. Ответ на первый вопрос задачи по силам большинству успевающих учеников, главное здесь — не испугаться условия, дочитать его до конца и немного подумать.
Успешность решения задания 18 (ранее 21 или 19) в ЕГЭ 2011-2020 гг.
Доля выпускников, приступивших к выполнению этого задания вариантов ЕГЭ в 2011—2021 гг., в среднем составляет 12—15% от общего числа сдающих. В таблице указан процент выпускников, получивших в разные годы за выполнение этого задания от 1 до 4 баллов.
Общность всех формулировок заданий №18 последних лет
С 2010 года вариант ЕГЭ по математике содержит четырёхбалльное задание С7 (в этом году №18) олимпиадного характера. Большую долю среди задач, уже использованных в вариантах экзамена, составляют задачи на последовательности (чисел, ходов, наборов чисел и т.д.)
Характерной особенностью подобных задач является исследование элементов заданной последовательности следующего вида:
а) на наличие элемента, обладающего заданным свойством;
б) подсчёт количества элементов, обладающих заданным свойством;
в) оценка (наибольшего или наименьшего значения) либо количества элементов, обладающих заданным свойством, либо некоторой числовой характеристики заданных элементов;
г) приведение примера, подтверждающего полученную оценку (подразумевается, но в условии не формулируется!).
→ zadanie_18m.pdf
→ Пособие по теме.
Автор: Прокофьев Александр Александрович.
Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня
Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.
Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.
«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.
Чему нужно научиться, решая задачи с параметром
В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.
Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.
Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.
Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:
Следующая тема курса – графические методы решения задач с параметром
Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a). Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.
На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.
В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.
Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.
Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
Купить доступ к этой задаче в составе
экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Разбор задач с параметрами из ЕГЭ по математике, по теме задачи с параметром ЕГЭ, как решать задание 18 в экзамене ЕГЭ, задачи с параметром ЕГЭ, задания с параметром ЕГЭ, задача 18 ЕГЭ, модуль и окружности, решение параметров ЕГЭ, решение задачи 18, система уравнений с параметром, научиться решать задачи с параметрами, сложных задач варианта КИМ ЕГЭ, начертить графики функций, ЕГЭ по математике профильного уровня, методы решения уравнений и неравенств, выпускникам 11 класса в 2018 году, поступающим в технический вуз.
Параметрические уравнения
Уравнение, которое кроме неизвестной величины содержит также другую дополнительную величину, которая может принимать различные значения из некоторой области, называется параметрическим. Эта дополнительная величина в уравнении называется параметр. На самом деле с каждым параметрическим уравнением может быть написано множество уравнений.
Способ решения параметрических уравнений
- Находим область определения уравнения.
- Выражаем a как функцию от $х$.
- В системе координат $хОа$ строим график функции, $а=f(х)$ для тех значений $х$, которые входят в область определения данного уравнения.
- Находим точки пересечения прямой, $а=с$, где $с∈(-∞;+∞)$ с графиком функции $а=f(х)$. Если прямая, а=с пересекает график, $а=f(х)$, то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение вида, $а=f(х)$ относительно $х$.
- Записываем ответ.
Общий вид уравнения с одним параметром таков:
$F(x, a) = 0$
При различных значениях, а уравнение $F(x, a) = 0$ может иметь различные множества корней, задача состоит в том, чтобы изучить все случаи, выяснить, что будет при любом значении параметра. При решении уравнений с параметром обычно приходится рассматривать много различных вариантов. Своевременное обнаружение хотя бы части невозможных вариантов имеет большое значение, так как освобождает от лишней работы.
Поэтому при решении уравнения $F(x, a) = 0$ целесообразно под ОДЗ понимать область допустимых значений неизвестного и параметра, то есть множество всех пар чисел ($х, а$), при которых определена (имеет смысл) функция двух переменных $F(x, а)$. Отсюда естественная геометрическая иллюстрация ОДЗ в виде некоторой области плоскости $хОа$.
ОДЗ различных выражений (под выражением будем понимать буквенно — числовую запись):
1. Выражение, стоящее в знаменателе, не должно равняться нулю.
${f(x)}/{g(x)}; g(x)≠0$
2. Подкоренное выражение должно быть неотрицательным.
$√{g(x)}; g(x)≥0$.
3. Подкоренное выражение, стоящее в знаменателе, должно быть положительным.
${f(x)}/{√{g(x)}}; g(x) > 0$
4. У логарифма: подлогарифмическое выражение должно быть положительным; основание должно быть положительным; основание не может равняться единице.
$log_{f(x)}g(x) {tableg(x) > 0; f(x) > 0; f(x)≠1;$
Алгебраический способ решения квадратных уравнений с параметром $ax^2+bx+c=0$
Квадратное уравнение $ax^2+bx+c=0, а≠0$ не имеет решений, если $D < 0$;
Квадратное уравнение имеет два различных корня, когда $D > 0$;
Квадратное уравнение имеет один корень, если $D=0$
Тригонометрические тождества
1. $tgα={sinα}/{cosα}$
2. $ctgα={cosα}/{sinα}$
3. $sin^{2}α+cos^{2}α=1$ (Основное тригонометрическое тождество)
Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса
$sinα=±√{1-cos^{2}α}$
$cosα=±√{1-sin^{2}α$
4. $tgα·ctgα=1$
5. $1+tg^{2}α={1}/{cos^{2}α}$
6. $1+ctg^{2}α={1}/{sin^{2}α}$
Формулы двойного угла
1. $sin2α=2sinα·cosα$
2. $cos2α=cos^{2}α-sin^{2}α=2cos^{2}α-1=1-2sin^{2}α$
3. $tg2α={2tgα}/{1-tg^{2}α}$
Формулы суммы и разности
$cosα+cosβ=2cos{α+β}/{2}·cos{α-β}/{2}$
$cosα-cosβ=2sin{α+β}/{2}·sin{β-α}/{2}$
$sinα+sinβ=2sin{α+β}/{2}·cos{α-β}/{2}$
$sinα-sinβ=2sin{α-β}/{2}·cos{α+β}/{2}$
Формулы произведения
$cosα·cosβ={cos{α-β}+cos{α+β}}/{2}$
$sinα·sinβ={cos{α-β}-cos{α+β}}/{2}$
$sinα·cosβ={sin{α+β}+sin{α-β}}/{2}$
Формулы сложения
$cos(α+β)=cosα·cosβ-sinα·sinβ$
$cos(α-β)=cosα·cosβ+sinα·sinβ$
$sin(α+β)=sinα·cosβ+cosα·sinβ$
$sin(α-β)=sinα·cosβ-cosα·sinβ$
Решение тригонометрического уравнения с параметром рассмотрим на примере.
Пример:
Найдите все значения параметра с, при каждом из которых уравнение $3cos2x-2sin2x=c$ имеет решение.
Решение:
Преобразуем данное уравнение к виду
$√{3^2+(-2)^2}(cos2xcosφ-sin2xsinφ)=c$
Воспользуемся тригонометрической формулой и свернем второй множитель как косинус суммы
$√{13}cos(2x+φ)=c$, где $φ=arccos{3}/{√{13}}$
Уравнение $√{13}cos(2x+φ)=c$ имеет решения тогда и только тогда, когда $-1≤ {c}/{√{13}} ≤ 1$, домножим полученное неравенство на $√{13}$ и получим
$-√{13} ≤ c ≤ √{13}$
Ответ: $-√{13} ≤ c ≤ √{13}$
Неравенства с параметром
Если имеется неравенство вида $F(a,x) ≤ G(a,x)$ то оно будет иметь одно решение, если $F'(a, x)=G'(a, x)$.
Системы уравнений:
Выделяют четыре основных метода решения систем уравнений:
- Метод подстановки: из какого-либо уравнения системы выражаем одно неизвестное через другое и подставляем во второе уравнение системы.
- Метод алгебраического сложения: путем сложения двух уравнений получить уравнение с одной переменной.
- Метод введения новых переменных: ищем в системе некоторые повторяющиеся выражения, которые обозначим новыми переменными, тем самым упрощая вид системы.
- Графический метод решения: из каждого уравнения выражается $«у»$, получаются функции, графики которых необходимо построить и посмотреть координаты точек пересечения.
Логарифмические уравнения и системы уравнений
Основное логарифмическое тождество:
$a^{log_{a}b}=b$
Это равенство справедливо при $b> 0, a> 0, a≠1$
Свойства логарифмов:
Все свойства логарифмов мы будем рассматривать для $a> 0, a≠ 1, b> 0, c> 0, m$ – любое действительное число.
1. Для любых действительных чисел $m$ и $n$ справедливы равенства:
$log_{а}b^m=mlog_{a}b$;
$log_{a^m}b={1}/{m}log_{a}b$.
$log_{a^n}b^m={m}/{n}log_{a}b$
2. Логарифм произведения равен сумме логарифмов по тому же основанию от каждого множителя.
$log_a(bc)=log_{a}b+log_{a}c$
3. Логарифм частного равен разности логарифмов от числителя и знаменателя по тему же основанию
$log_a{b}/{c}=log_{a}b-log_{a}c$
4. При умножении двух логарифмов можно поменять местами их основания
$log_{a}b·log_{c}d=log_{c}b·log_{a}d$, если $a, b, c, d >0, a≠1, b≠1$.
5. $c^{log_{a}b}=b^{log_{a}b}$, где $а, b, c > 0, a≠1$
6. Формула перехода к новому основанию
$log_{a}b={log_{c}b}/{log_{c}a}$
7. В частности, если необходимо поменять местами основание и подлогарифмическое выражение
$log_{a}b={1}/{log_{b}a}$
При решении систем, содержащих логарифмические уравнения, часто удается, избавившись от логарифма, заменить одно или оба уравнения системы рациональными уравнениями. После этого надо выразить одну переменную через другую и после постановки получить уравнение с одной переменной. Кроме того, часто встречаются задачи на замену переменной в пределах одного или обоих уравнений системы и системы, требующие отбора решений.
Логарифмические неравенства:
1. Определить ОДЗ неравенства.
2. По свойствам логарифма преобразовать неравенство к простому виду, желательно получить с двух сторон логарифмы по одинаковому основанию.
3. Перейти к подлогарифмическим выражениям, при этом надо помнить, что:
а) если основание больше единицы, то при переходе к подлогарифмическим выражениям знак неравенства остается прежним;
b) если основание меньше единицы, то при переходе к подлогарифмическим выражениям знак неравенства меняется на противоположный;
с) если в основании находится переменная, надо рассмотреть оба варианта.
4. Решить неравенство.
5. Выбрать решения с учетом ОДЗ из п.1
При решении логарифмических неравенств с переменной в основании легче всего воспользоваться тождественными преобразованиями:
$log_{a}f > b ↔ {table (f-a^b)(a-1) > 0; f > 0; a > 0;$
$log_{a}f+log_{a}g > 0 ↔ {table(fg-1)(a-1)> 0; f > 0,g > 0; a > 0;$
$log_{a}f+b > 0 ↔ {table(fa^b-1)(a-1) > 0; f > 0; a > 0;$
Системы, содержащие показательные уравнения
Свойства степеней
1. При умножении степеней с одинаковыми основаниями основание остается прежним, а показатели складываются.
$a^n·a^m=a^{n+m}$
2. При делении степеней с одинаковыми основаниями основание остается прежним, а показатели вычитаются
$a^n:a^m=a^{n-m}$
3. При возведении степени в степень основание остается прежним, а показатели перемножаются
$(a^n)^m=a^{n·m}$
4. При возведении в степень произведения в эту степень возводится каждый множитель
$(a·b)^n=a^n·b^n$
5. При возведении в степень дроби в эту степень возводиться числитель и знаменатель
$({a}/{b})^n={a^n}/{b^n}$
6. При возведении любого основания в нулевой показатель степени результат равен единице
$a^0=1$
Основные методы решения систем, содержащих показательные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – положительность выражения $a^{f(x)}$, которую полезно учитывать, вводя соответствующее ограничение при замене переменной.
Показательные неравенства, сводящиеся к виду $a^{f(x)} ≥ a^{g(x)}$:
1. Преобразовать показательное уравнение к виду $a^{f(x)} ≥ a^{g(x)}$
2. Перейти показателям степеней, при этом если основание степени меньше единицы, то знак неравенства меняется на противоположный, если основание больше единицы – знак неравенства остается прежним.
3. Решить полученное неравенство.
4. Записать результат.
Показательные неравенства, которые можно разложить на множители или сделать замену переменной.
1. Для данного метода во всем неравенстве по свойству степеней надо преобразовать степени к одному виду $a^{f(x)}$.
2. Сделать замену переменной $a^{f(x)}=t, t>0$.
3. Получаем рациональное неравенство, которое можно решить методом интервалов путем разложения на множители выражения.
4. Делаем обратную замену с учетом того, что $t>0$. Получаем простейшее показательное неравенство $a^{f(x)}=t$, решаем его и результат записываем в ответ.
Уравнения с многочленами
Многочлен может обозначаться записью $Р(х)$ — это означает, что многочлен зависит от «х», если записать $Р(х+1)$ — это означает, что в многочлене вместо «х» надо сделать замену на скобку $(х+1)$
Пример:
Найдите значение выражения: $4(p(2x)−2p(x+3))$, если $p(x)=x−6$
Решение:
В данном условии задан многочлен, зависящий от «х», как $p(x)=x−6$.
Чтобы было понятнее, назовем исходный многочлен основной формулой, тогда, чтобы записать $p(2x)$, в основной формуле заменим «х» на «2х».
$p(2x)=2х-6$
Аналогично $p(x+3)=(х+3)-6=х+3-6=х-3$
Соберем все выражение: $4(p(2x)−2p(x+3))=4((2х-6)-2(х-3))$
Далее осталось раскрыть скобки и привести подобные слагаемые
$4((2х-6)-2(х-3))=4(2х-6-2х+6)=4·0=0$
Ответ: $0$
Системы иррациональных уравнений
Основные методы решения систем, содержащих иррациональные уравнения, ничем принципиально не отличаются от методов решения других систем: это метод алгебраического сложения, замена переменной в пределах одного уравнения или всей системы, подстановка. Единственная особенность – надо расписать ОДЗ каждого уравнения, а в конце решения выбрать решение системы с учетом ОДЗ.
Чтобы решить иррациональное уравнение, необходимо:
1. Преобразовать заданное иррациональное уравнение к виду
$√{f(x)}=g(x)$ или $√{f(x)}=√{g(x)}$
2. Обе части уравнение возвести в квадрат
$√{f(x)}^2={g(x)}^2$ или $√{f(x)}^2=√{g(x)}^2$
3. Решить полученное рациональное уравнение.
4. Сделать проверку корней, так как возведение в четную степень может привести к появлению посторонних корней. (Проверку можно сделать при помощи подстановки найденных корней в исходное уравнение.)
Уважаемый посетитель!
Если у вас есть вопрос, предложение или жалоба, пожалуйста, заполните короткую форму и изложите суть обращения в текстовом поле ниже. Мы обязательно с ним ознакомимся и в 30-дневный срок ответим на указанный вами адрес электронной почты
Статус Абитуриент Студент Родитель Соискатель Сотрудник Другое
Филиал Абакан Актобе Алагир Алматы Алушта Анапа Ангарск Архангельск Армавир Асбест Астана Астрахань Атырау Баку Балхаш Барановичи Барнаул Белая Калитва Белгород Бельцы Берлин Бишкек Благовещенск Бобров Бобруйск Борисов Боровичи Бронницы Брянск Бузулук Чехов Челябинск Череповец Черкесск Дамаск Дербент Димитровград Дмитров Долгопрудный Домодедово Дубай Дубна Душанбе Екатеринбург Электросталь Елец Элиста Ереван Евпатория Гана Гомель Гродно Грозный Хабаровск Ханты-Мансийск Хива Худжанд Иркутск Истра Иваново Ижевск Калининград Карабулак Караганда Каракол Кашира Казань Кемерово Киев Кинешма Киров Кизляр Королев Кострома Красноармейск Краснодар Красногорск Красноярск Краснознаменск Курган Курск Кызыл Липецк Лобня Магадан Махачкала Майкоп Минеральные Воды Минск Могилев Москва Моздок Мозырь Мурманск Набережные Челны Нальчик Наро-Фоминск Нижневартовск Нижний Новгород Нижний Тагил Ногинск Норильск Новокузнецк Новосибирск Новоуральск Ноябрьск Обнинск Одинцово Омск Орехово-Зуево Орел Оренбург Ош Озёры Павлодар Пенза Пермь Петропавловск Подольск Полоцк Псков Пушкино Пятигорск Радужный Ростов-на-Дону Рязань Рыбинск Ржев Сальск Самара Самарканд Санкт-Петербург Саратов Сергиев Посад Серпухов Севастополь Северодвинск Щербинка Шымкент Слоним Смоленск Солигорск Солнечногорск Ставрополь Сургут Светлогорск Сыктывкар Сызрань Тамбов Ташкент Тбилиси Терек Тихорецк Тобольск Тольятти Томск Троицк Тула Тверь Тюмень Уфа Ухта Улан-Удэ Ульяновск Ургенч Усть-Каменогорск Вёшенская Видное Владимир Владивосток Волгодонск Волгоград Волжск Воркута Воронеж Якутск Ярославль Юдино Жлобин Жуковский Златоуст Зубова Поляна Звенигород
Тип обращения Вопрос Предложение Благодарность Жалоба
Тема обращения Поступление Трудоустройство Обучение Оплата Кадровый резерв Внеучебная деятельность Работа автоматических сервисов университета Другое
* Все поля обязательны для заполнения
Я даю согласие на обработку персональных данных, согласен на получение информационных рассылок от Университета «Синергия» и соглашаюсь c политикой конфиденциальности