Мотивация
Если вы откроете список всех задач по Планиметрии №16, которые встречались на ЕГЭ по Профилю за всё время его существования, вы удивитесь тому, как сильно она усложнилась, и на сегодняшний день на этой позиции стоит достаточно содержательная геометрическая задача с действительно порой навороченными конструкциями, которые вводят в ступор, начинающих её решать школьников. Всё это еще приправлено тем, что из года в год, на фоне эволюции этой задачи, или из-за этого, процент учеников школ решающих геометрию в ЕГЭ весьма низкий:
Хуже решается только задача по Стереометрии №13. Отсюда комом накатывается мнение, что «№16 решать дано не всем», «лучше меньше баллов, зато точно решу №12», «я нарисовал треугольник, а что делать не вижу дальше» и куча других деструктивных мыслей, которые точно не помогают вам в подготовке к ЕГЭ. По факту, из моего личного опыта, задачи по Геометрии что в ЕГЭ, что в ОГЭ, очень плохо решаются в силу отсутствия какого-то четкого алгоритма действий(как это есть в параметрах, уравнениях и неравенствах, финансовой математике), которые бы точно приводили к конкретным результатам — делай раз, делай два…
Всё правда, нам нужен не просто набор теории и формул с фактами, этого недостаточно. Нам нужна практика, опыт решения задач и стараться чувствовать эту логику при решении задач. И тут я не открою странных лайфхаков, секретных методик, будистких тайн и введьминых приколов. Будем честны, нужно время, конкретная структура и понятный набор ресурсов.
В рамках этой статьи я вложу весь свой преподавательский опыт и свои знания, как человека, который не перестаёт учиться и осваивать новые знания, чтобы помочь вам забрать на экзамене баллы за одну из самых сложных задач.
Начинаем с азов
Давайте представим, что ваша задача поднять с нуля ваши знания по геометрии на приемлемый для ЕГЭ и выше уровень. Нам не обойтись без основ и фундамента, с которым вы встречались со времен 7 класса. Что делаем? Берем учебник Атанасяна, и тут у многих расширятся зрачки и волна ужаса пройдет ледяной лавиной от бровей до мизинцев. На самом деле прошу не пугаться, нам нужен какой-то подробный школьный учебник, в котором будет изложена вся структурированная теория, необходимая и та, что мы можем применять для решения задач. Если у вас есть альтернативный — без проблем, используйте его.
Схема работы следующая: открываем со второй главы и для каждого параграфа нас будут интересовать все доказанные теоремы, а вернее не просто сухой факт, а то откуда он берется и как его доказать. Сначала пробуем сами как-то к этому придти, если не получается, то смотрим на то, какое доказательство приводит автор.
Важно! Мы не сидим тупо перед книжкой, развивая геморрой, мы берем ручку и листочек, и сидим выписываем, конспектируем и пробуем доказывать все указанные теоремы. А после просматриваем задачи в конце, решать все не нужно, только те, которые вам покажутся реально сложными и с наскока не понятными как решать.
Что нам это даст? Мы учимся воспринимать конструкции, понимать логику построения доказательства в геометрии того или иного утверждения, а также мы сами того не подозревая запоминаем всю нужную информацию, которую мы будем применять позже для решения задач №16 на ЕГЭ!
Подумайте сами, математика — это про структуру, логику, и сколько вам нужно времени чтобы зазубрить строчку предложения? 5 ? 10 минут? А на сколько вас хватит держать это всё в голове? Вы забудете при первой же возможности. Нам нужна логика доказательства этого факта, благодаря которой наш мозг будет обучаться новому подходу в мышлении и все что связанно с геометрическими фактами вы запомните намного лучше, если будете реально пытаться доказать простейшие факты из учебника. А также на самом экзамене, уровень стресса которого пробивает все возможные значения, вы будете 100% уверены, что используемый вами факт при решении задачи не вымысел возбужденного воображения.
Сколько нужно на это времени? Если идти со скоростью две главы в день, то около недели.
Как закрепить полученный результат на практике?
Теперь, друг, ты — мощь и сила! Но без практики нам не обойтись поэтому все полученные навыки начинаем применять для решения конкретных задач. Тут нам поможет книга Гордина «Планиметрия».
Схема работы с ней следующая: можете кратко просмотреть задачи данные в качестве разобранных в начале каждой главы, попробовать решить самостоятельно и потом сравнить с данным решением. Далее, переходим на отработку задач первого уровня, тут прям всё решать нет большого смысла, хоть и страшно полезно, но в режиме ограниченного времени сразу смотрим на задачи второго уровня и пытаемся прорешать максимальное количество в каждом разделе. После того как разобрались со вторым уровнем стараемся решить задачи из третьего, но тут уже можно прыгать с задачи на задачу, так как местами именно в третий уровень уже включены задачи чуть сложнее ЕГЭ. И ещё: главы про симметрии, вектора, координаты и повороты можете пропускать, если чувствуете нехватку сил, времени и вдохновения.
Кабанеем
Если со всем предыдущими пунктами справились — Glückwünsch! Поздравляю! У нас как раз есть время чтобы порешать сложные задачи и разобрать другие методы для планиметрии Прасолова. Это поможет вам разобраться с самыми разнообразными методами, которые могут повстречаться вам при решении геометрических задач. Плюс, будет реально посмотреть эту книгу и книгу Ткачука при подготовке уже к ДВИ МГУ, но это совсем другая история))
Уровень: Убийца планиметрии
На этом мы выходим на финальный этап и раз наша цель именно ЕГЭ, то дальше делаем следующее:
Открываем все задачи ЕГЭ с 2014 года и планомерно их прорешиваем. Такая процедура даст нам понимание того, что такое реальные ЕГЭшные задачи, а не Статград, от которого порой хочется сбежать. Плюс нарабатывается навык решения задачи за ограниченное время и правильное оформление всего что вы нарешали.
На этом всё?
На этом этапе я всегда даю себе время на подумать, потому что хочется что-то ещё добавить и впихнуть максимальное количество пользы. Но в данном случае, я в одной статье уместил годы опыта и сотни учеников. Схема рабочая, пользуйтесь.
Всегда рад отзывам и комментариям!
С Пламенной любовью,
Никита Салливан из Умскул.
Геометрия на ЕГЭ по математике
Геометрия на профильном ЕГЭ по математике — одна из сложных тем для абитуриентов. Дело в том, что когда-то экзамен по геометрии в школе был обязательным, а сейчас — нет. В результате у большинства абитуриентов знания по геометрии близки к нулю.
Геометрия на профильном ЕГЭ — это три задачи в части 1 (сюда входит и планиметрия, и стереометрия), а также задача 14 (стереометрия) и для многих недосягаемая задача 16 (геометрия) из второй части. Как же научиться их решать?
Начнем с планиметрии. Прежде всего, выучите основные формулы геометрии.
На нашем сайте вы найдете курс геометрии с нуля — основные определения, формулы и теоремы, а также разбор множества экзаменационных задач по геометрии из части 1.
Для решения задач по геометрии из части 2 нужна более серьезная подготовка.
Первый этап — теория. Необходимый материал есть в учебнике по геометрии за 7-9 класс (автор — А. В. Погорелов или Л. С. Атанасян). Выпишите в тетрадь определения и формулировки теорем. Сделайте чертежи. Доказывать теоремы старайтесь самостоятельно.
Программа по геометрии.
1. Треугольники. Элементы треугольника. Вершины и стороны. Высоты, медианы, биссектрисы (определения).
2. Построение треугольника: практические задания.
а) Три стороны треугольника равны
и
сантиметров соответственно. Постройте треугольник
с помощью циркуля и линейки.
б) В треугольнике угол
равен
градусов, сторона
равна
,
равна
. Постройте треугольник
.
в) В треугольнике сторона
равна
, угол
равен
, угол
равен
. Постройте треугольник
.
3. Три признака равенства треугольников. Неравенство треугольника.
4. Постройте с помощью циркуля и линейки:
а) серединный перпендикуляр к отрезку;
б) биссектрису угла.
5. Углы при параллельных прямых и секущей. Вертикальные, смежные, соответственные, односторонние и накрест лежащие углы. Их определение и свойства.
6. Теорема о сумме углов треугольника.
7. Внешний угол треугольника.
8. Постройте в одном и том же треугольнике
а) Три высоты. Рассмотрите также случаи тупоугольного и прямоугольного треугольника.
б) Три биссектрисы.
в) Три медианы.
9. Равнобедренный треугольник. Определение и свойства. Высота в равнобедренном треугольнике.
10. Средняя линия треугольника и ее свойства.
11. Прямоугольный треугольник. Теорема Пифагора.
12. Определения синуса, косинуса и тангенса:
— для острого угла прямоугольного треугольника;
— для произвольного угла.
13. Четырехугольники. Сумма углов четырехугольника.
14. Параллелограмм. Определение и свойства. Площадь параллелограмма.
15. Виды параллелограммов и их свойства (ромб, прямоугольник, квадрат).
16. Трапеция. Средняя линия трапеции. Площадь трапеции.
17. Подобные треугольники. Три признака подобия треугольников.
18. Площадь треугольника. Формулы и
.
19. Теоремы синусов и косинусов.
20. Чему равно отношение площадей подобных фигур.
21. Свойство медианы (в каком отношении делятся медианы в точке пересечения?)
22. Свойство биссектрисы (в каком отношении биссектриса делит противоположную сторону?)
23. Окружность и круг. Длина окружности. Площадь круга. Длина дуги и площадь сектора.
24. Теорема о радиусе, проведенном в точку касания.
25. Центральный и вписанный углы. Связь между ними.
26. Теоремы о вписанных углах.
27. Теорема о пересекающихся хордах.
28. Теорема об отрезках длин касательных, проведенных из одной точки.
29. Теорема о секущей и касательной.
30. Дан треугольник . Постройте:
а) окружность, вписанную в данный треугольник;
б) окружность, описанную вокруг данного треугольника.
Где находятся центры этих окружностей?
31. Еще три формулы площади треугольника (через радиус вписанной окружности, через радиус описанной окружности и формула Герона).
32. Когда можно вписать окружность в четырехугольник? Когда — описать вокруг четырехугольника?
Программа по стереометрии
Разбирая и решая задания ЕГЭ по геометрии, вы заметите очень интересную вещь. Простые задачи из части 1, разобранные на нашем сайте, часто оказываются базовыми схемами, на которых строятся сложные задачи из части 2 профильного ЕГЭ.
Решая на ЕГЭ задачи по геометрии, обращайте особое внимание на оформление. Помните совет, который дал абитуриентам автор бестселлера «Математика — абитуриенту» В. В. Ткачук. Вот он, этот ценнейший совет:
«Подробность решения должна быть такова, чтобы его мог понять человек в 10 (десять) раз глупее вас».
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Геометрия на ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
09.03.2023
7 декабря 2017
В закладки
Обсудить
Жалоба
Основные методы решения задач по геометрии на ЕГЭ
Задания №14 и №16 повышенного уровня сложности с развёрнутым ответом.
Презентация: mr-geo.pdf
Параллельность в пространстве
- Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.
- Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.
- Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.
- Если прямая a, не лежащая в плоскости $α$, параллельна некоторой прямой $b$, которая лежит в плоскости $α$, то прямая a параллельна плоскости $α$.
- Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.
Перпендикулярность в пространстве
- Две прямые называются перпендикулярными, если угол между ними равен $90°$.
- Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
- Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны.
- Теорема о трех перпендикулярах: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.
- Если из одной точки проведены к плоскости перпендикуляр и наклонные, то:
- Перпендикуляр короче наклонных.
- Равные наклонные имеют равные проекции на плоскости.
- Большей наклонной соответствует большая проекция на плоскости.
Скрещивающиеся прямые
- Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются.
- Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей.
- Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
- Угол между скрещивающимися прямыми – это острый угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.
Многогранники
Введем общие обозначения
$P_{осн}$ — периметр основания;
$S_{осн}$ — площадь основания;
$S_{бок}$ — площадь боковой поверхности;
$S_{п.п}$ — площадь полной поверхности;
$V$ — объем фигуры.
Название | Определение и свойства фигуры | Обозначения и формулы объема, площади |
Прямоугольный параллелепипед | 1. Все двугранные углы прямоугольного параллелепипеда – прямые. 2. Противоположные грани попарно равны и параллельны. 3. Диагонали прямоугольного параллелепипеда равны. 4. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты). $B_1D^2=AD^2+DC^2+C_1C^2$ |
$V=a·b·c$, где $a, b$ и $с$ – длина, ширина и высота. $S_{бок}=P_{осн}·c=2(a+b)·c$ $S_{п.п}=2(ab+bc+ac)$. |
Куб | 1. Противоположные грани попарно параллельны. 2. Все двугранные углы куба – прямые. 3. Диагональ куба в $√3$ раз больше его ребра. $B_1 D=АВ√3$ |
Пусть $а$ — длина ребра куба, $d$ — диагональ куба, тогда справедливы формулы: $V=a^3={d^3}/{3√3}$. $S_{п.п}=6а^2=2d^2$ $R={a√3}/{2}$, где $R$ — радиус сферы, описанной около куба. $r={a}/{2}$, где $r$ — радиус сферы, вписанной в куб. |
Призма |
Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.
|
$S_{бок}=P_{осн}·h$ $S_{п.п}=S_{бок}+2S_{осн}$ $V=S_{осн}·h$ |
Пирамида |
|
Формулы вычисления объема и площади поверхности правильной пирамиды. $h_a$ — высота боковой грани (апофема) $S_{бок}={P_{осн}·h_a}/{2}$ $S_{п.п}=S_{бок}+S_{осн}$ $V={1}/{3} S_{осн}·h$ |
Усеченная пирамида |
|
$V={h(F+f+√{Ff})}/{3}$ Где $F,f$ — площади оснований; $h$ — высота (расстояние между основаниями); Для правильной ус. пирамиды $S_{бок}={(P+p)·a}/{2}$, где $P$ и $p$ – периметры оснований; $а$ – апофема. |
Цилиндр |
|
$S_{бок.пов.}=2πR·h$ $S_{полной.пов.}=2πR(R+h)$ $V=πR^2·h$ |
Конус |
|
$S_{бок.пов.}=πR·l$ $S_{полной.пов.}=πR^2+πR·l=πR(R+l)$ $V={πR^2·h}/{3}$ |
Усеченный конус |
|
$S_{бок}=πl(R+r)$ $S_{п.п.}=π(R^2+r^2+l(R+r))$ $V={πH(R^2+r^2+Rr)}/{3}$ Где $R$ и $r$ – радиусы оснований; $Н$ — высота усеченного конуса. |
Сфера, шар |
|
$S_{п.п}=4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы $V={4π·R^3}/{3}={π·d^3}/{6}$, где $R$ — радиус шара, $d$ — диаметр шара. |
Тетраэдр
Радиус описанной сферы тетраэдра.
Вокруг тетраэдра можно описать сферу, радиус которой находим по формуле, где $R$ — радиус описанной сферы, $a$ — ребро тетраэдра.
$R={a√6}/{4}$
Радиус вписанной в тетраэдр сферы.
В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже.
Где $r$ — радиус вписанной в тетраэдр сферы,
$a$ — ребро тетраэдра.
$r={a√6}/{12}$
Составные многогранники
Задачи на нахождение объема составного многогранника:
- Разделить составной многогранник на несколько параллелепипедов.
- Найти объем каждого параллелепипеда.
- Сложить объемы.
Задачи на нахождение площади поверхности составного многогранника.
— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:
$S_{полн.пов.}=P_{осн}·h+2S_{осн}$
Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.
— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Пример:
Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).
Представим данный многогранник как прямую призму с высотой равной $12$.
$S_{полн.пов.}=P_{осн}·h+2S_{осн}$
$P_{осн}=8+6+6+2+2+4=28$
Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:
$S_1=6·6=36$
$S_2=2·4=8$
$S_осн=36+8=44$
Далее подставим все данные в формулу и найдем площадь поверхности многогранника
$S_{полн.пов.}=28·12+2·44=336+88=424$
Ответ: $424$
— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Задачи на нахождение расстояния между точками составного многогранника.
В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.
Теорема Пифагора
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
$АС^2+ВС^2=АВ^2$
Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.
Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.
Соотношение между сторонами и углами в прямоугольном треугольнике:
В прямоугольном треугольнике $АВС$, с прямым углом $С$:
Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.
Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.
- Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
- Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
- Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.
Значения тригонометрических функций некоторых углов:
$α$ | $30$ | $45$ | $60$ |
$sinα$ | ${1}/{2}$ | ${√2}/{2}$ | ${√3}/{2}$ |
$cosα$ | ${√3}/{2}$ | ${√2}/{2}$ | ${1}/{2}$ |
$tgα$ | ${√3}/{3}$ | $1$ | $√3$ |
$ctgα$ | $√3$ | $1$ | ${√3}/{3}$ |
Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей
$АВ=a_n$ — сторона правильного многоугольника
$R$ — радиус описанной окружности
$r$ — радиус вписанной окружности
$n$ — количество сторон и углов
$a_n=2·R·sin{180°}/{n}$;
$r=R·cos{180°}/{n}$;
$a_n=2·r·tg{180°}/{n}$.
Формула нахождения градусной меры угла в правильном многоугольнике:
$α={(n-2)·180°}/{n}$
Формулы площадей треугольников и многоугольников, которые могут находиться в основании многогранников
В основании лежит треугольник
1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне а
2. $S={a·b·sinα}/{2}$, где $a, b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
3. $S=p·r$, где $r$ — радиус вписанной окружности
4. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
5. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.
В основании лежит четырехугольник
Прямоугольник
$S=a·b$, где $а$ и $b$ — смежные стороны.
Ромб
$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба
$S=a^2·sinα$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.
Трапеция
$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
Площади правильных многоугольников:
1. Для равностороннего треугольника $S={a^{2}√3}/{4}$, где $а$ — длина стороны.
2. Квадрат
$S=a^2$, где $а$ — сторона квадрата.
3. Правильный шестиугольник
Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:
$S=6·S_{треугольника}={6·a^{2}√3}/{4}={3·a^{2}√3}/{2}$, где $а$ — сторона правильного шестиугольника.
Геометрия на профильном ЕГЭ по математике — одна из сложных тем для абитуриентов. Дело в том, что когда-то экзамен по геометрии в школе был обязательным, а сейчас — нет. В результате у большинства абитуриентов знания по геометрии близки к нулю.
Геометрия на профильном ЕГЭ — это три в части 1 (сюда входит и планиметрия, и стереометрия), а также задача 14 (стереометрия) и для многих недосягаемая 16 (геометрия) из второй части. Как же научиться их решать?
Начнем с планиметрии. Прежде всего, выучите основные формулы геометрии.
На нашем сайте вы найдете курс геометрии с нуля — основные определения, формулы и теоремы, а также разбор множества экзаменационных задач по геометрии из части 1.
Для решения задач по геометрии из части 2 нужна более серьезная подготовка.
Первый этап — теория. Необходимый материал есть в учебнике по геометрии за 7-9 класс (автор — А. В. Погорелов или Л. С. Атанасян). Выпишите в тетрадь определения и формулировки теорем. Сделайте чертежи. Доказывать теоремы старайтесь самостоятельно.
Программа по геометрии.
1. Треугольники. Элементы треугольника. Вершины и стороны. Высоты, медианы, биссектрисы (определения).
2. Построение треугольника: практические задания.
а) Три стороны треугольника равны
и
сантиметров соответственно. Постройте треугольник
с помощью циркуля и линейки.
б) В треугольнике угол
равен
градусов, сторона
равна двум,
равна
. Постройте треугольник
.
в) В треугольнике сторона
равна
, угол
равен
, угол
равен
. Постройте треугольник
.
3. Три признака равенства треугольников. Неравенство треугольника.
4. Постройте с помощью циркуля и линейки:
а) серединный перпендикуляр к отрезку;
б) биссектрису угла.
5. Углы при параллельных прямых и секущей. Вертикальные, смежные, соответственные, односторонние и накрест лежащие углы. Их определение и свойства.
6. Теорема о сумме углов треугольника.
7. Внешний угол треугольника.
8. Постройте в одном и том же треугольнике
а) три высоты. Рассмотрите также случаи тупоугольного и прямоугольного треугольника.
б) три биссектрисы.
в) три медианы.
9. Равнобедренный треугольник. Определение и свойства. Высота в равнобедренном треугольнике.
10. Средняя линия треугольника и ее свойства.
11. Прямоугольный треугольник. Теорема Пифагора.
12. Определения синуса, косинуса и тангенса
— для острого угла прямоугольного треугольника
— для произвольного угла.
13. Четырехугольники. Сумма углов четырехугольника.
14. Параллелограмм. Определение и свойства. Площадь параллелограмма.
15. Виды параллелограммов и их свойства. (ромб, прямоугольник, квадрат).
16. Трапеция. Средняя линия трапеции. Площадь трапеции.
17. Подобные треугольники. Три признака подобия треугольников.
18. Площадь треугольника. Формулы и
.
19. Теоремы синусов и косинусов.
20. Чему равно отношение площадей подобных фигур.
21. Свойство медианы (в каком отношении делятся медианы в точке пересечения?)
22. Свойство биссектрисы (в каком отношении биссектриса делит противоположную сторону?)
23. Окружность и круг. Длина окружности. Площадь круга. Длина дуги и площадь сектора.
24. Теорема о радиусе, проведенном в точку касания.
25. Центральный и вписанный углы. Связь между ними.
26. Теоремы о вписанных углах.
27. Теорема о пересекающихся хордах.
28. Теорема об отрезках длин касательных, проведенных из одной точки.
29. Теорема о секущей и касательной.
30. Дан треугольник . Постройте
а) окружность, вписанную в данный треугольник
б) окружность, описанную вокруг данного треугольника.
Где находятся центры этих окружностей?
31. Еще три формулы площади треугольника (через радиус вписанной окружности, через радиус описанной окружности и формула Герона).
32. Когда можно вписать окружность в четырехугольник? Когда — описать вокруг четырехугольника?
Программа по стереометрии
Разбирая и решая задания ЕГЭ по геометрии, вы заметите очень интересную вещь. Простые задачи из части 1, разобранные на нашем сайте, часто оказываются базовыми схемами, на которых строятся сложные задачи из части 2 профильного ЕГЭ.
Решая на ЕГЭ задачи по геометрии, обращайте особое внимание на оформление. Помните совет, который дал абитуриентам автор бестселлера «Математика — абитуриенту» В. В. Ткачук. Вот он, этот ценнейший совет:
«Подробность решения должна быть такова, чтобы его мог понять человек в 10 (десять) раз глупее вас».
Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор
Как показывают результаты профильного экзамена по математике, задачи по геометрии — в числе самых сложных для выпускников. Тем не менее, решить их, хотя бы частично, а значит заработать дополнительные баллы к общему результату возможно. Для этого необходимо, конечно, знать достаточно много о «поведении» геометрических фигур и уметь применять эти знания для решения задач. Здесь мы постараемся дать некоторые рекомендации, как подготовиться к решению задачи по стереометрии.
Эта задача обычно состоит из двух частей:
За решение данной задачи на экзамене по математике в 2018 году можно получить максимум два первичных балла. Допускается решить только «доказательную» или только «вычислительную» часть задачи и заработать в этом случае один первичный балл.
Многие школьники на экзамене даже не приступают к решению задачи №14, хотя она значительно проще, например, задачи № 16 — по планиметрии.
В задачу № 14 традиционно включается лишь несколько вопросов из всех возможных для стереометрических задач:
В соответствии с этими вопросами строится и подготовка к решению задачи.
Сначала, разумеется, нужно выучить все необходимые аксиомы и теоремы, которые понадобятся для доказательной части задачи. Помимо того, что знание аксиом и теорем поможет вам на экзамене непосредственно при решении задачи, их повторение позволит систематизировать и обобщить ваши знания по стереометрии вообще, то есть создать из этих знаний некую целостную картину.
Итак, что же нужно выучить?
После того как вы повторили теорию, можно приступать к рассмотрению методов решения задач. В курсе «1C:Репетитор» представлены все необходимые материалы для подготовки: видеолекции с теорией, тренажеры с пошаговым решением задач, тесты для самопроверки, интерактивные модели, позволяющие ученикам 10-х и 11-х классов наглядно рассмотреть методы решения задач по стереометрии, в том числе на примерах задач ЕГЭ 2017 года.
Мы рекомендуем решать задачи в такой последовательности:
- Углы в пространстве (между скрещивающимися прямыми, между прямой и плоскостью, между плоскостями);
- Расстояния в пространстве (между двумя точками, между точкой и прямой, между точкой и плоскостью, между скрещивающимися прямыми);
- Решение многогранников, то есть нахождение углов между ребрами и гранями, расстояний между ребрами, площадей поверхностей, объемов по заданным в условии задачи элементам;
- Сечения многогранников — методы построения сечений (например, метод следов) и нахождения площадей сечений и объемов получившихся после построения сечения многогранников (например, использование свойств перпендикулярной проекции и метод объемов).
Для всех указанных типов задач существуют различные методы решения:
Эти методы нужно знать и уметь применять, так как есть задачи, которые довольно сложно решаются одним методом и гораздо проще — другим.
При решении стереометрических задач более эффективным по сравнению с классическим методом нередко оказывается векторно-координатный. Классический метод решения задач требует отличного знания аксиом и теорем стереометрии, умения применять их на практике, строить чертежи пространственных тел и сводить стереометрическую задачу к цепочке планиметрических. Классический метод, как правило, быстрее приводит к искомому результату, чем векторно-координатный, но требует определенной гибкости мышления. Векторно-координатный метод представляет собой набор готовых формул и алгоритмов, но при этом требует более длительных расчетов; тем не менее, для некоторых задач, например, для нахождения углов в пространстве, он предпочтительнее классического.
Многим абитуриентам не позволяет справиться со стереометрической задачей неразвитое пространственное воображение. В этом случае мы рекомендуем использовать для самоподготовки интерактивные тренажеры с динамическими моделями пространственных тел. Такие тренажеры есть на портале «1С:Репетитор» (для перехода к их использованию необходимо зарегистрироваться): работая с ними, вы не только сможете «выстроить» решение задачи «по шагам», но и на объемной модели увидеть все этапы построения чертежа в различных ракурсах.
С помощью таких же динамических чертежей мы рекомендуем учиться строить сечения многогранников. Кроме того, что модель автоматически проверит правильность вашего построения, вы сами сможете, рассматривая сечение с разных сторон, убедиться, верно или неверно оно построено, и если неправильно, то в чем именно ошибка. Построение сечения на бумаге, с помощью карандаша и линейки, конечно, таких возможностей не дает. Посмотрите пример построения сечения пирамиды плоскостью с использованием такой модели (Нажмите на картинку, что бы перейти к тренажеру):
Последний вопрос, на который надо обратить внимание, — это нахождение площадей сечений или объемов, получившихся после построения сечения многогранников. Здесь также существуют подходы и теоремы, которые позволяют в общем случае существенно сократить трудозатраты на поиск решения и получение ответа. В курсе «1С:Репетитор» мы знакомим вас с этими приемами.
Если вы следовали нашим советам, разобрались со всеми вопросами, которые здесь затронуты, и решили достаточное количество задач, то велика вероятность, что вы практически готовы к решению задачи по стереометрии на профильном ЕГЭ по математике в 2018 году. Дальше необходимо только поддерживать себя «в форме» до самого экзамена, то есть решать, решать и решать задачи, совершенствуя свое умение применять изученные приемы и методы в разных ситуациях. Удачи!
Регулярно тренируйтесь в решении задач
Чтобы начать заниматься на портале «1С:Репетитор», достаточно зарегистрироваться.
Вы можете:
- Начать заниматься бесплатно.
- Получить доступ ко всей теории и тренажерам задачи №14. Это стоит всего 990 рублей.
- Купить доступ к этой задаче в составе экспресс-курса «Геометрия» и научиться решать задачи №14 и №16 на максимальный балл.
Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.
Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.
Здесь ключевые фразы, чтобы поисковые роботы лучше находили наши советы:
Как решать задание 14 на экзамене ЕГЭ, задачи по геометрии, решение задач, по стереометрии, методы решения задач, тренажеры, видео, КИМ ЕГЭ 2017, подготовка к ЕГЭ, профиль математика, математика профильного уровня, решение задачи по наклонной треугольной призме, грани, взаимно перпендикулярно, общее ребро, плоскости, точки, ребро равно, боковая поверхность, решение задач на сечение многогранника, перпендикулярное сечение, вычислить объем фигуры, в основании прямой треугольной призмы лежит, признаки равенства и подобия треугольников, примеры решения задач ЕГЭ по геометрии, вычисление сечения, задачи по математике профильного уровня, применение методов сечения, решение задач на площадь, задачи ЕГЭ 2017 по стереометрии, подготовка к ЕГЭ, выпускникам 11 класса, в 2018 году, поступающим в технический вуз.
1. Состояние преподавания геометрии в школе
Введение новой формы экзамена (в форме ЕГЭ)
разделило образовательную общественность на
два, а то и на три лагеря, которые за или против
данной формы экзамена. Я не могу отнести себя ни к
одной из этих групп, я – учитель-практик, и моя
задача – подготовить всех учащихся к экзамену. И
вот, готовя учащихся к математике, а не отдельно к
алгебре и началам анализа, я увидела, что у
учащихся формируется целостное представление
математики, проявляется интерес к предмету,
формируется осознанная мотивация изучения
предмета.
Однако именно при подготовке к экзамену в форме
ЕГЭ очень ярко видны пробелы изучения геометрии
в школе.
Преподавая много лет в старших классах, я
увидела, что учащиеся имеют очень большие
затруднения в изучении геометрии. На экзаменах
по математике задача по геометрии является самым
трудным заданием. Окончив 9 классов и изучив
планиметрию, ученик должен, казалось бы, уметь
решать любую задачу в данном курсе. Однако
учащиеся не только не умеют решать задачи, даже
боятся за них браться. Я не могла согласиться с
таким положением дел. Мне было бы очень обидно
терять баллы на этих задачах.
Помочь учащимся можно было бы, заинтересовав их
изучением геометрии и организовав их
деятельность таким образом, чтобы был результат.
Проанализировав задачи в ЕГЭ, можно сказать,
что в преподавании геометрии в школе очень много
изучается как бы вскользь, чуть затрагивая
свойство или даже теорему.
К таким моментам можно отнести, например,
свойство биссектрисы угла в треугольнике.
Биссектриса угла в треугольнике делит
противоположную сторону на отрезки,
пропорциональные сторонам угла, из которого
проведена данная биссектриса. В учебнике
геометрии Л.С. Атанасяна ни слова не сказано об
этом свойстве, даже в задачах не упоминается. К
слову сказать, учебник совсем не плохой, по
сравнению с учебником геометрии Погорелова А.В.
Однако на экзаменах в форме ЕГЭ в заданиях по
геометрии 2004 и 2005 года дается задача именно на
данное свойство. В варианте 60 2005 года приведена
задача по геометрии: В прямоугольном
треугольнике АВЕ с прямым углом Е проведена
биссектриса ВТ, причем АТ = 15, ТЕ = 12. Найдите
площадь треугольника АВТ. Данная задача именно
на свойство биссектрисы. В варианте 74 2005 года
задача по геометрии: В прямоугольном
треугольнике АВС с прямым углом С проведена
биссектриса ВК. Найдите площадь треугольника
АВК, если площадь треугольника АВС равна 21, а
синус угла А равна 0,4. Данная задача также на
свойство биссектрисы.
Для хорошего результата по ЕГЭ на данное
свойство следует обратить особое внимание. Кроме
данного свойства, такая же судьба у некоторых
других свойств и признаков. Например: свойство
четырехугольника, описанного окружностью, и
четырехугольника с вписанной окружностью. У
четырехугольника, в который вписана окружность,
суммы противоположных сторон равны. У
четырехугольника, около которого описана
окружность, сумма противоположных углов равна 180
градусам. Я также считаю, что свойство длин
касательных, проведенных из произвольной точки к
окружности, также недостаточно подтверждена
задачами. Конечно, учитель для того и находится в
классе, чтобы должным образом организовать
работу в классе. Необходимо постоянно повторять,
контролировать, организовывать взаимопроверку и
самопроверку на уроках и во внеурочное время,
чтобы вызывать постоянный интерес к решению
задач.
2. Технология решения планиметрических задач
по геометрии на уроках в 10–11-х
классах
Работая над данной проблемой, у меня сложилась
определенная система, которая позволяет:
- сформировать целостное понятие геометрии на
плоскости; - повысить мотивацию изучения геометрии;
- повысить качество знаний;
- повысить уровень образовательного процесса в
целом.
Начиная каждый урок геометрии, я начинаю его с
повторения. В 10-м и 11-м классе решают задачи на
планиметрию. Всю программу по планиметрии я
разбила на блоки.
- 1 блок – треугольники и их элементы;
- 2 блок – четырехугольники и их элементы;
- 3 блок – площади многоугольников;
- 4 блок – окружность и ее элементы;
- 5 блок – хорды, секущие и касательные;
- 6 блок – векторы, метод координат на
плоскости.
Блок включает систему знаний и навыков, которые
учащийся должен продемонстрировать после его
изучения. Блок устанавливает границы, в которых
знания учащихся оцениваются, и стандарты, в
соответствии с которыми проходит обучение и
оценка. Сам по себе модуль не является учебной
программой или планом. Приведу пример изучения
1-го блока. Этапы блока:
1 этап – повторение необходимых
теоретических знаний:
- виды треугольников (равносторонний,
равнобедренный, прямоугольный); - элементы треугольника и их свойства ( медиана,
биссектриса, высота, проекции катетов); - теорема Пифагора;
- теорема косинусов;
- теорема синусов;
- средняя линия треугольника;
- подобие треугольников.
Для 10–11-классников этот материал не трудный,
но, учитывая, что он занимает на уроке от 8 до 10
минут, он является очень важным именно для
подготовки учащихся к решению планиметрических
задач на ЕГЭ.
2 этап – решение простейших задач и
контроль в группах и в парах; работа по
дидактическому материалу;
3 этап – решение нестандартных и трудных
задач. Такие задачи приносят огромную пользу.
Решение одной трудной задачи заменяет решение
многих простейших задач, но на данном этапе это
продиктовано реальной потребностью. На данном
этапе контроль осуществляется в основном
учителем.
4 этап – предварительный контроль. Так как
данный материал на уроке не основной, то и
проверка несколько затруднена. В контрольные,
самостоятельные по основной теме я добавляю
последним пунктом задачу из курса планиметрии.
5 этап – погружение; данный этап проходит
на каникулах. За неделю до каникул каждый
учащийся получает свой вариант задач и начинает
его решать. В варианте содержится 20–25
разнообразных задач. Решив все задачи, учащийся
приобретает навыки самостоятельного решения
задач, уходит страх перед экзаменом, появляется
интерес к геометрии.
Роль учителя – подобрать таким образом
теоретический и практический учебный материал,
чтобы он был направлен на решение
интегрированной дидактической цели, обеспечивал
системность деятельности учащихся при
индивидуальной и групповой работе. При такой
организации учебного процесса все участники
оперируют одинаковыми понятиями. Данная
технология обучения базируется на единстве
принципов, системности, проблемности и
блочности.
Теоретическая значимость и новизна данной
технологии состоит в том, что она
рассматривается в комплексе: цель, принципы,
способность проектирования содержания обучения,
система задач и упражнений, конструирование
дидактических материалов и система контроля и
оценки учебных достижений.
Цель – активизация самостоятельности учащихся
на протяжении всего периода обучения. Реализация
цели позволит:
- повысить мотивацию обучения;
- повысить качество знаний;
- сформировать интерес учащихся к геометрии.
3. Пример практического варианта при
погружении
Вариант 20
1. Угол ВАС при основании АВ равнобедренного
треугольника АВС равен 50o. Высоты
треугольника пересекаются в точке О.
Вычислить АОВ.
2. Высота равностороннего треугольника равна 5
см. На одной из его сторон дана точка, расстояние
от которой до другой стороны равно 3 см. Найти
расстояние от этой точки до другой стороны.
3. Сумма двух углов параллелограмма равна 100o.
Вычислите углы параллелограмма.
4. Острый угол прямоугольной трапеции равен 45o.
Определить ее среднюю линию, если меньшая
диагональ и большая боковая сторона равны между
собой и меньшее основание равно 12 см.
5. Средняя линия равнобедренной трапеции равна
18 см, отношение оснований равно 1 : 5. Определить
высоту трапеции, если ее боковая сторона равна 15
см.
6. Сумма длин диагоналей квадрата равна 16 см. Найти площадь
прямоугольника, если одна его сторона на 3 см
меньше другой, а периметр равен периметру
квадрата.
7. Одна сторона прямоугольника на 2 см меньше
другой, а его площадь равна 35. Найти площадь
квадрата, периметр которого равен периметру
данного прямоугольника.
8. Найти площадь равнобедренного треугольника,
если высоты, опущенные на его основание и боковую
сторону, соответственно равны 5 и 6.
9. Диагонали равнобочной трапеции взаимно
перпендикулярны, а площадь равна 4. Определить
высоту трапеции.
10. Около окружности описана равнобедренная
трапеция с тупым углом 120o и периметром 36.
Найти ее площадь.
11. В равнобедренном треугольнике основание
равно 30, а боковая сторона – 39. Определить радиус
вписанной окружности.
12. В равнобочную трапецию, площадь которой
равна 20, вписана окружность радиуса 2. Определить
стороны трапеции.
13. В параллелограмме острый угол равен 60o.
Найти стороны параллелограмма, если его периметр
равен 22, а меньшая диагональ равна 7.
14. В трапеции АВСД Д=
АСВ. АС –
биссектриса угла А. Определить диагональ АС, если
средняя линия трапеции равна 8, а основания
относятся как 3: 5.
15. В равнобедренном треугольнике центр
вписанной окружности делит высоту в отношении 17:
15. Основание равно 60. Найти радиус этой
окружности.
16. В равнобедренном треугольнике основание
равно 16, а боковая сторона – 10. Определить
радиусы вписанной и описанной окружностей и
расстояние между их центрами.
17. Найти площадь правильного восьмиугольника
со стороной 8 см.
18. АВ – диаметр, АС – хорда, АД – ее проекция на
диаметр АВ. Найти радиус, если АС = 12, АД = 4.
19. В прямоугольном треугольнике биссектриса
прямого угла делит гипотенузу в отношении 3 : 4,
радиус вписанного круга равен 7. Найти стороны
треугольника.
20. Центр вписанной окружности делит высоту
равнобедренного треугольника, опущенную на
основание, на отрезки 5 и 3, считая от вершины.
Найти стороны треугольника.
21. Около равнобедренного треугольника, боковая
сторона которого вдвое больше основания, описана
окружность радиуса 1. Найти радиус окружности,
вписанной в этот треугольник, и расстояние между
центрами вписанной и описанной окружностей.
22. При каком значении С векторы (С; 2) и в
(18; С) коллинеарны и одинаково направлены?
23. Найти основание трапеции, если ее площадь
равна 144 см2, а основания относятся как 4: 5 и
высота равна 16 см.
ОТВЕТЫ:
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
|
1000 |
2,3 |
1300,500 |
18 |
9 |
61,75 |
36 |
18,75 |
2 |
140,29 |
36,4 |
|
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
2,8,5 |
3 и 8 |
7,74 |
7,5 |
2 2/3, 8 1/3, 5 |
309,0 |
18 |
21, 28, 35 |
10, 10, 12 |
0,375 0,5 |
6 |
8 и 10 |
4. Результаты погружения:
Ф.И. учащегося | 1 четверть | 2 четверть | 3 четверть | 4 четверть | ГОДОВАЯ |
Александров |
4 / 78% |
4/ 80% |
5 / 89 % |
5 / 85% |
5 / 83% |
Воробьева |
4 / 71% |
3 / 51% |
4 / 75% |
4/ 76% |
4 /68% |
Глушак |
4 / 72% |
4 / 76% |
4/ 76% |
4 / 75% |
4 /75% |
Жирков |
5 / 87% |
5 / 81% |
5/ 83% |
5 / 89% |
5 /85% |
и т.д. … |
… |
… |
… |
… |
… |
5. Результаты ЕГЭ в решении задач по геометрии:
2001 уч. год |
2002 уч. год |
2003 уч. год |
2004 уч. год |
2005 уч. год |
41% |
45% |
63% |
71% |
В итоге проделанной работы учащиеся показали
следующие результаты на экзаменах по математике
в форме ЕГЭ:
2001 уч. год | 2002 уч. год | 2003 уч. год | 2004 уч. год | |
Качество знаний |
82% |
100% |
100% |
100% |
Средний балл |
3,8 |
4,4 |
4,4 |
4,6 |