Скачать материал
Скачать материал
- Сейчас обучается 82 человека из 39 регионов
Описание презентации по отдельным слайдам:
-
1 слайд
РЕАКЦИИ МАТРИЧНОГО СИНТЕЗА.
БИОСИНТЕЗ БЕЛКА
Подготовка к ЕГЭ -
2 слайд
Особенности реакций матричного синтеза
Свойственны только живым организмам
Отражают основное свойства живого – воспроизведение себе подобных
Обеспечивают специфическую последовательность нуклеотидов
Способствуют высокой скорости реакции -
3 слайд
К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию) и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.
Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.
-
4 слайд
Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией.
Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК. -
5 слайд
Информация
Информация о первичной структуре белка закодирована в молекуле ДНК в виде триплетов (кодонов)
Триплет (кодон) – участок из трех нуклеотидов в молекуле ДНК
Один триплет молекулы ДНК кодирует одну аминокислоту молекулы белка:
1 триплет 1 аминокислота -
6 слайд
ДНК: АТГ – ГГЦ – ТГА – ГЦА – ТЦГ
Белок:
тир
про
тре
арг
сер
ДНК:
Белок:
ген
Ген – участок молекулы ДНК, в котором закодирована информация о структуре одного белка: 1ген 1 белок
Ген
ген -
7 слайд
Генетический код – система записи генетической информации в молекуле ДНК о строении молекулы белка
Генетическая информация записана только в одной (кодогенной) цепи ДНК
Генетический код
ДНК
и-РНК -
8 слайд
Свойства генетического кода
Триплетность
Информация закодирована в виде триплетов
Однозначность
Один триплет может кодировать одну аминокислоту
Вырожденность (избыточность)
Для большинства аминокислот существует несколько триплетов
Неперекрываемость
Нуклеотид входит в состав только одного триплета
Прерывистость
Между генами имеются «знаки препинания» -
9 слайд
Свойства генетического кода
Универсальность
Код одинаков для всех живых организмов
20 аминокислот
43=64 триплета
Стартовые и стоп-кодоны: УАГ, УГА, УАА – не кодируют аминокислоты и указывают на начало и конец синтеза молекулы белка -
10 слайд
В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).
Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией.В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской. -
11 слайд
Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток. -
12 слайд
Этапы биосинтеза
Транскрипция
Трансляция -
13 слайд
I этап — транскрипция
Транскрипция («списывание») – процесс считывания информации о первичной структуре белка с молекулы ДНК молекулой и-РНК (синтез молекулы и-РНК на основе молекулы ДНК)
Во время транскрипции происходит перенос генетической информации с молекулы ДНК на и-РНК
Транскрипция происходит с помощью фермента ДНК-полимеразы по принципу комплементарности -
14 слайд
Реакции, в которых одна молекула полимера служит матрицей (основой) для синтеза другой молекулы, называются реакциями матричного типа
ДНК служит матрицей для синтеза и-РНК
I этап — транскрипция
и-РНК переносит информацию из ядра на рибосомы и становится матричной РНК (м-РНК) -
15 слайд
Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Транскрипция происходит только на одной цепи ДНК, которая называется транскрибируемой, или кодирующей, в отличие от другой — смысловой, или кодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности.
Синтезированные в процессе транскрипции в ядре молекулы иРНК покидают его через ядерные поры, а митохондриальные и пластидные иРНК остаются внутри органоидов. После транскрипции происходит процесс активации аминокислот, в ходе которой аминокислота присоединяется к соответствующей свободной тРНК. -
16 слайд
Трансляция – перевод нуклеотидной последовательности с и-РНК на аминокислотную последовательность и сборка молекулы белка на рибосомах
*В трансляции принимают участие молекулы т-РНК, все виды РНК, рибосомы, аминокислоты
II этап — трансляция
т-РНК
и-РНК
рибосома
аминокислоты -
17 слайд
Акцепторный конец –
присоединяет аминокислоту
Кодовый триплет (антикодон)
*Существует 61 тип т-РНК с разными антикодонами
ГУЦ
Антикодон т-РНК комплементарен триплету на и–РНК
«Трилистник» т-РНК
вал -
18 слайд
1. Инициация – начало биосинтеза
Малая субъединица рибосомы нанизывается на м-РНК и скользит до точки инициации (начала) биосинтеза – это стартовый кодон АУГ
Данный кодон соответствует – метиониновой т-РНК, которая связывается со стартовым кодоном с помощью водородных связей
Стадии трансляции
АУГ ААГ ЦГУ ГГЦ
м – РНК:
Затем происходит присоединение большой субъединицы рибосомы
*Целостная рибосома, несет два активных триплета – функциональный центр -
19 слайд
Функциональный центр рибосомы – ФЦР
(два триплета)
А аминокислотный центр
центр узнавания аминокислотыР
пептидный центр
центр присоединения аминокислоты -
20 слайд
Стадии трансляции
м – РНК:
АУГ – ААГ – ЦГУ – ГГЦ …
2. Элонгация — сборка молекулы белка -
21 слайд
Стадии трансляции
3.Терминация – окончание биосинтеза
На стоп-кодонах синтез полипептида прекращается
Рибосома вновь разделяется на субъединицы -
22 слайд
Трансляция— это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.). -
23 слайд
Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону АУГ подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь.
Когда рибосома передвигается на один кодон иРНК, первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется, и шаг за шагом полипептидная цепь удлиняется, то есть происходит ее элонгация. -
24 слайд
Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
Репликация ДНК и синтез белка в клетке протекают по принципу матричного синтеза, поскольку новые молекулы нуклеиновых кислот и белков синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК). -
25 слайд
Стадии трансляции
Полисома – молекула и-РНК, на которой находятся несколько рибосом, синтезирующих одинаковые белки -
26 слайд
ДНК
*Содержит информацию о первичной структуре белка *Служит матрицей для синтеза и-РНК
и-РНК
*Переносит информацию о структуре белка из ядра на рибосомы
*Служит матрицей для синтеза белка
Роль участников синтеза белков
аминокислоты
*Служат строительным материалом для молекулы белка -
27 слайд
т-РНК
*С помощью ферментов присоединяет аминокислоту и транспортирует ее на рибосомы
рибосома
*Осуществляет сборку молекулы белка
ферменты
*Катализируют процессы биосинтеза
Роль участников синтеза белков
АТФ
*Обеспечивает энергией процессы биосинтеза белка -
-
-
-
-
-
33 слайд
Задача 1. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь смысловая, нижняя транскрибируемая)
5’-ЦГААГГТГАЦААТГТ-3’
3’-ГЦТТЦЦАЦТГТТАЦА-5’Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.
-
34 слайд
1. Нуклеотидная последовательность участка тРНК (верхняя цепь по условию смысловая):
ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’
2. Нуклеотидная последовательность антикодона УГА (по условию третий триплет) соответствует кодону на иРНК УЦА;
3. По таблице генетического кода этому кодону соответствует аминокислота -Сер, которую будет переносить данная тРНК. -
35 слайд
Алгоритм выполнения задания
1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
ДНК: 3’-ГЦТ-ТЦЦ-АЦТ-ГТТ-АЦА-5’
тРНК: 5’-ЦГА-АГГ-УГА-ЦАА-УГУ-3’
На ДНК с 3′ конца строится тРНК с 5′ — конца.
2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
Если третий триплет соответствует антикодону тРНК 5’- УГА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от 3’ → к 5’ получим 3’-АГУ- 5’, определяем иРНК: 5’–УЦА–3′.
3. По таблице генетического кода кодону 5′-УЦА-3′ соответствует аминокислота -Сер, которую будет переносить данная тРНК.
Пояснение к строению ДНК в условии:
Двойная спираль ДНК. Две антипараллельные ( 5’- конец одной цепи располагается напротив 3’- конца другой) комплементарные цепи полинуклеотидов, соединенной водородными связями в парах А-Т и Г-Ц, образуют двухцепочечную молекулу ДНК. Молекула ДНК спирально закручена вокруг своей оси. На один виток ДНК приходится приблизительно 10 пар оснований.
Смысловая цепь ДНК — Последовательность нуклеотидов в цепи кодирует наследственную информацию. -
36 слайд
Задача 2. Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − ТААТГАЦЦГЦАТАТАТЦЦАТ −3’
3’ − АТТАЦТГГЦГТАТАТАГГТА −5’Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту Мет. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.
-
37 слайд
1. По принципу комплементарности находим цепь иРНК:
5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’.
2. Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода:
Мет-Тре-Ала-Тир-Иле-Гис -
38 слайд
Алгоритм выполнения задания
1. По принципу комплементарности на основе транскрибируемой цепи ДНК находим цепь иРНК:
ДНК 3’ − АТТАЦТГГЦГТАТАТАГГТА −5’
иРНК 5’ − УААУГАЦЦГЦАУАУАУЦЦАУ − 3’
2. По условию сказано, что синтез начинается с кодона, которым закодирована аминокислота МЕТ, по таблице генетического находим триплет иРНК, который кодирует МЕТ: АУГ (5’ −АУГ− 3’)
По принципу комплементарности определяем, что информативная часть гена в транскрибируемой цепи ДНК будет начинаться с нуклеотида Т (триплет 3’−ТАЦ−5’)
В ответ: Информативная часть начинается с третьего нуклеотида Т на ДНК, так как кодон АУГ кодирует аминокислоту Мет.
3. Последовательность аминокислот находим по кодонам иРНК в таблице генетического кода (начиная с триплета АУГ, т.е. «откидываем» два нуклеотида) :
иРНК 5’ − АУГ-АЦЦ-ГЦА-УАУ-АУЦ-ЦАУ − 3’
белок: Мет-Тре-Ала-Тир-Иле-Гис -
39 слайд
Задача 3. Исходный фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − ГЦГГГЦТАТГАТЦТГ − 3’
3’ − ЦГЦЦЦГАТАЦТАГАЦ − 5’В результате замены одного нуклеотида в ДНК четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту Вал. Определите аминокислоту, которая кодировалась до мутации. Какие изменения произошли в ДНК, иРНК в результате замены одного нуклеотида? Благодаря какому свойству генетического кода одна и та же аминокислота у разных организмов кодируется одним и тем же триплетом? Ответ поясните. Для выполнения задания используйте таблицу генетического кода.
-
40 слайд
1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК — ГАТ (транскрибируемой цепи ДНК — АТЦ), определяем триплет иРНК: ГАУ, по таблице генетического кода определяем, что он кодирует аминокислоту Асп.
2. Во фрагменте ДНК в четвёртом триплете смысловой цепи ГАТ нуклеотид А заменился на Т (в транскрибируемой цепи в триплете АТЦ нуклеотид Т заменился на А), а в иРНК в четвёртом кодоне (ГАУ) нуклеотид А заменился на У (ГУУ).
3. Свойство генетического кода — универсальность.
(!!!) Наличие в ответе множества триплетов считается ошибкой, так как в задании указано, что произошла замена одного нуклеотида. -
41 слайд
Алгоритм выполнения задания
1. Четвёртый триплет исходного фрагмента смысловой цепи ДНК: 5′-ГАТ-3′ (транскрибируемой цепи ДНК: 5′-АТЦ-3′), определяем триплет иРНК: 5′-ГАУ-3′, по таблице генетического кода определяем, что он кодирует аминокислоту Асп.
(!!!)Триплет иРНК: 5′-ГАУ-3′ нашли по принципу комплементарности на основе триплета транскрибируемой цепи ДНК 5′-АТЦ-3′. Для нахождения иРНК сначала произведем запись триплета ДНК в обратном порядке от 3’ → к 5’ получим 3’-ЦТА- 5’
2. По условию сказано, что «четвёртая аминокислота во фрагменте полипептида заменилась на аминокислоту Вал». По таблице генетического кода находим, что аминокислота Вал кодируется четырьмя нуклеотидами: ГУУ, ГУЦ, ГУА, ГУГ;
НО в условии указано, что произошла замена одного нуклеотида! т.е. в иРНК в четвёртом кодоне (5′-ГАУ-3′) нуклеотид А заменился на У (5′-ГУУ-3′).В ответ: В иРНК в четвёртом кодоне (ГАУ) нуклеотид А заменился на У (ГУУ). Во фрагменте ДНК в четвёртом триплете смысловой цепи 5′-ГАТ-3′ нуклеотид А заменился на Т (в транскрибируемой цепи в триплете 5′-АТЦ-3′ нуклеотид Т заменился на А).
3. Свойство генетического кода — универсальность (Код един для всех организмов живущих на Земле). -
42 слайд
Задача 4. Молекулы тРНК, несущие соответствующие антикодоны, входят в рибосому в следующем порядке: ГУА, УАЦ, УГЦ, ГЦА.
Определите последовательность нуклеотидов смысловой и транскрибируемой цепей ДНК, иРНК и аминокислот в молекуле синтезируемого фрагмента белка. Ответ поясните. Для решения задания используйте таблицу генетического кода. При выполнении задания учитывайте, что антикодоны тРНК антипараллельны кодонам иРНК. -
43 слайд
1. По принципу комплементарности определяем последовательность иРНК: 5’— УАЦГУАГЦАУГЦ — 3’;
2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности:
5’ − ТАЦГ ТАГЦАТГЦ − 3’
3’ − АТ ГЦАТЦГТАЦГ − 5’.
3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде: Тир-Вал-Ала-Цис. -
44 слайд
Алгоритм выполнения задания
1. По принципу комплементарности определяем последовательность иРНК на основе антикодонов тРНК, но сначала ориентируем антикодоны тРНК (3’→ 5’) так, чтобы они присоединялись к иРНК антипараллельно (по условию антикодоны тРНК даны в ориентации 5’→ 3’)
тРНК: 3’АУГ 5’, 3’ЦАУ 5’, 3’ЦГУ 5’, 3’АЦГ 5’
иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’
2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе найденной иРНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируему — снизу):
5’ − ТАЦ-ГТА-ГЦА-ТГЦ − 3’
3’ − АТГ-ЦАТ-ЦГТ-АЦГ − 5’.
3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде:
иРНК: 5’— УАЦ-ГУА-ГЦА-УГЦ — 3’
белок: Тир-Вал-Ала-Цис -
45 слайд
Задача 5. Фрагмент молекулы ДНК имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − ГТЦАЦАГЦГАТЦААТ − 3’
3’ − ЦАГТГТЦГЦТАГТТА − 5’Определите последовательность аминокислот во фрагменте полипептидной цепи и обоснуйте свой ответ. Какие изменения могли произойти в результате генной мутации во фрагменте молекулы ДНК, если вторая аминокислота в полипептиде заменилась на аминокислоту Про? Какое свойство генетического кода определяет возможность существования разных фрагментов мутированной молекулы ДНК? Ответ обоснуйте. Для решения задания используйте таблицу генетического кода.
-
46 слайд
1. Последовательность аминокислот в полипептиде: Вал-Тре-Ала-Иле-Асн определяется по последовательности нуклеотидов в молекуле иРНК:
5’ − ГУЦАЦАГЦГАУЦААУ − 3’.
2. Во фрагменте белка вторая аминокислота Тре заменилась на Про что возможно при замене второго триплета в смысловой цепи ДНК АЦА на триплет ЦЦТ, ЦЦЦ, ЦЦА или ЦЦГ (второго кодона в РНК АЦА на кодон ЦЦУ, ЦЦЦ, ЦЦА или ЦЦГ).
3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Про) соответствует более одного триплета (четыре триплета). -
47 слайд
Алгоритм выполнения задания
1. Последовательность аминокислот в полипептиде определяется по последовательности нуклеотидов в молекуле иРНК:
иРНК: 5’ − ГУЦ-АЦА-ГЦГ-АУЦ-ААУ − 3’
белок: Вал-Тре-Ала-Иле-Асн
2. Во фрагменте белка вторая аминокислота Тре заменилась на Про что возможно при замене второго кодона в иРНК 5’-АЦА-3’ на кодон 5’-ЦЦУ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’ → кодоны находим по таблице генетического кода
Второй триплет в смысловой цепи ДНК 5’-АЦА-3’ заменился на триплет 5’-ЦЦТ-3’, 5’-ЦЦЦ-3’, 5’-ЦЦА-3’ или 5’-ЦЦГ-3’.
дополнительно — НЕ ДЛЯ ОТВЕТА! — Скорее всего произошла мутация инверсия — хромосомная перестройка, при которой происходит поворот участка хромосомы на 180°:
иРНК: 5’ − ГУЦ-АЦА-ГЦГ -АУЦ-ААУ − 3’ → иРНК: 5’ − ГУА-ЦЦА-ГЦГ -АУЦ-ААУ − 3’
Первая аминокислота осталась той же, т.к. кодон ГУА, так же как и ГУЦ, кодирует аминокислоту вал (определяем по таблице генетического кода).
3. Свойство генетического кода — избыточность (вырожденность), так как одной аминокислоте (Про) (и вал) соответствует более одного триплета (четыре триплета). -
48 слайд
Задача 6. Некоторые вирусы в качестве генетического материала несут РНК. Такие вирусы, заразив клетку, встраивают ДНК-копию своего генома в геном хозяйской клетки. В клетку проникла вирусная РНК следующей последовательности:
5’ − АУГГЦУУУУГЦА − 3’.
Определите, какова будет последовательность вирусного белка, если матрицей для синтеза иРНК служит цепь, комплементарная вирусной РНК. Напишите последовательность двуцепочечного фрагмента ДНК, укажите 5’ и 3’ концы цепей. Ответ поясните. Для решения задания используйте таблицу генетического кода. -
49 слайд
1. По принципу комплементарности находим нуклеотидную последовательность участка ДНК:
5’ − АТГГЦТТТТГЦА − 3’
3’ — ТАЦЦГААААЦГТ − 5’.
2. По принципу комплементарности находим нуклеотидную последовательность иРНК:
5’ − АУГГЦУУУУГЦА − 3’.
3. По таблице Генетического кода определяем последовательность вирусного белка: МЕТ-АЛА-ФЕН-АЛА. -
50 слайд
Алгоритм выполнения задания
1. По принципу комплементарности на основе вирусной РНК находим нуклеотидную последовательность транскрибируемого участка ДНК:
вирусная РНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’
транскрибируемая ДНК 3’− ТАЦ-ЦГА-ААА-ЦГТ − 5’.
Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе данной РНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируемую — снизу):
5’ − АТГ-ГЦТ-ТТТ-ГЦА − 3’
3’ — ТАЦ-ЦГА-ААА-ЦГТ − 5’.
2. По принципу комплементарности на основе транскрибируемой ДНК находим нуклеотидную последовательность иРНК:
ДНК: 3’ — ТАЦ-ЦГА-ААА-ЦГТ − 5
иРНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’.
3. По таблице Генетического кода на основе иРНК определяем последовательность вирусного белка:
иРНК: 5’ − АУГ-ГЦУ-УУУ-ГЦА − 3’
белок: МЕТ-АЛА-ФЕН-АЛА -
51 слайд
Задача 7. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5’ − ТГЦГЦТГЦАЦЦАГЦТ − 3’
3’ − АЦГЦГАЦГТГГТЦГА − 5’
Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, обозначьте 5’ и 3’ концы этого фрагмента и определите аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет с 5’ конца соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. -
52 слайд
1. Нуклеотидная последовательность участка тРНК (нижняя цепь по условию транскрибируемая):
ДНК: 3’-АЦГ-ЦГА-ЦГТ-ГГТ-ЦГА-5’
тРНК: 5’-УГЦ-ГЦУ-ГЦА-ЦЦА-ГЦУ-3’
2. Нуклеотидная последовательность антикодона ГЦА (по условию третий триплет) соответствует кодону на иРНК УГЦ;
3. По таблице генетического кода этому кодону соответствует аминокислота -Цис, которую будет переносить данная тРНК. -
53 слайд
Алгоритм выполнения задания
1. По фрагменту молекулы ДНК, определяем нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте.
ДНК: 3’-АЦГ-ЦГА-ЦГТ-ГГТ-ЦГА-5’
тРНК: 5’-УГЦ-ГЦУ-ГЦА-ЦЦА-ГЦУ-3’
На ДНК с 3′ конца строится тРНК с 5′ — конца.
2. Определяем кодон иРНК, который будет комплементарен триплету тРНК в процессе биосинтеза белка.
Если третий триплет соответствует антикодону тРНК 5’- ГЦА-3’ , для нахождения иРНК сначала произведем запись в обратном порядке от 3’ → к 5’ получим 3’-АЦГ- 5’, определяем иРНК: 5’–УГЦ–3′.
3. По таблице генетического кода кодону 5′-УГЦ-3′ соответствует аминокислота Цис, которую будет переносить данная тРНК. -
54 слайд
Задача 8. Антикодоны тРНК поступают к рибосомам в следующей последовательности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов смысловой и транскрибируемой цепей ДНК и последовательность аминокислот во фрагменте молекулы синтезируемого белка, используя таблицу генетического кода.
Ответ поясните. При выполнении задания учитывайте, что антикодоны тРНК антипараллельны кодонам иРНК. -
55 слайд
1. По принципу комплементарности определяем последовательность иРНК на основе антикодонов тРНК, но сначала ориентируем антикодоны тРНК (3’→ 5’) так, чтобы они присоединялись к иРНК антипараллельно (по условию антикодоны тРНК даны в ориентации 5’→ 3’)
тРНК: 3’ГЦУ 5’, 3’АГЦ5’, 3’УАА5’, 3’ЦЦЦ5’
иРНК: 5’-ЦГА-УЦГ-АУУ-ГГГ- 3’
2. Нуклеотидную последовательность транскрибируемой и смысловой цепей ДНК также определяем по принципу комплементарности (на основе найденной иРНК по принципу комплементарности строим транскрибируемую ДНК, затем на её основе находим смысловую. В молекулярной генетике принято смысловую ДНК писать сверху, транскрибируему — снизу):
5’ − ЦГА-ТЦГ-АТТ-ГГГ − 3’
3’ − ГЦТ-АГЦ-ТАА-ЦЦЦ − 5’.
3. По таблице генетического кода и кодонам иРНК находим последовательность аминокислот в пептиде:
иРНК: 5’- ЦГА-УЦГ-АУУ-ГГГ — 3’
белок: Арг-Сер-Иле-Гли -
56 слайд
Задача 9. Фрагмент генетического аппарата вируса, представленного молекулой РНК, имеет нуклеотидную последовательность: 5′ − АУГГУАГЦУУУУАУА − 3′.
Определите нуклеотидную последовательность фрагмента двуцепочечной молекулы ДНК, которая синтезируется в результате обратной транскрипции на вирусной РНК, укажите 5′ и 3′ концы. Установите последовательность нуклеотидов в иРНК и аминокислот во фрагменте белка вируса, если матрицей для синтеза иРНК
служит цепь, комплементарная вирусной РНК. Ответ поясните. Для решения задания используйте таблицу генетического кода. -
57 слайд
1) Фрагмент двуцепочечной молекулы ДНК определяется по принципу комплементарности по вирусной РНК:
5′ − АТГГТАГЦТТТТАТА − 3′ (кодирующая цепь)
3′ − ТАЦЦАТЦГААААТАТ − 5′ (матричная цепь);
Примечание
Обратная транскрипция — процесс образования двуцепочечной ДНК на основе одноцепочечной РНК, характерный для РНК-вирусов.
2) Последовательность иРНК — 5′ − АУГГУАГЦУУУУАУА − 3′ — находим комлементарную цепь иРНК по условию задачи по матричной цепи ДНК, которая в свою очередь комплементарна вирусной РНК;
3) По таблице генетического кода определяем последовательность аминокислот вирусного белка: Мет-Вал-Ала-Фен-Иле.
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
6 154 065 материалов в базе
- Выберите категорию:
- Выберите учебник и тему
-
Выберите класс:
-
Тип материала:
-
Все материалы
-
Статьи
-
Научные работы
-
Видеоуроки
-
Презентации
-
Конспекты
-
Тесты
-
Рабочие программы
-
Другие методич. материалы
-
Найти материалы
Материал подходит для УМК
Другие материалы
- 17.12.2021
- 86
- 0
- 17.12.2021
- 67
- 0
Вам будут интересны эти курсы:
-
Курс повышения квалификации «Организация и руководство учебно-исследовательскими проектами учащихся по предмету «Биология» в рамках реализации ФГОС»
-
Курс повышения квалификации «ФГОС общего образования: формирование универсальных учебных действий на уроке биологии»
-
Курс повышения квалификации «Медико-биологические основы безопасности жизнедеятельности»
-
Курс повышения квалификации «Методические аспекты реализации элективного курса «Антропология и этнопсихология» в условиях реализации ФГОС»
-
Курс повышения квалификации «Нанотехнологии и наноматериалы в биологии. Нанобиотехнологическая продукция»
-
Курс повышения квалификации «Основы биоэтических знаний и их место в структуре компетенций ФГОС»
-
Курс профессиональной переподготовки «Анатомия и физиология: теория и методика преподавания в образовательной организации»
-
Курс повышения квалификации «Гендерные особенности воспитания мальчиков и девочек в рамках образовательных организаций и семейного воспитания»
-
Курс профессиональной переподготовки «Биология и химия: теория и методика преподавания в образовательной организации»
-
Курс профессиональной переподготовки «Организация производственно-технологической деятельности в области декоративного садоводства»
-
Курс повышения квалификации «Инновационные технологии обучения биологии как основа реализации ФГОС»
-
Курс профессиональной переподготовки «Организация и выполнение работ по производству продукции растениеводства»
Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот
Генетическая информация в клетке
Воспроизведение себе подобных является одним из фундаментальных свойств живого. Благодаря этому явлению существует сходство не только между организмами, но и между отдельными клетками, а также их органоидами (митохондриями и пластидами). Материальной основой этого сходства является передача зашифрованной в последовательности нуклеотидов ДНК генетической информации, которая осуществляется благодаря процессам репликации (самоудвоения) ДНК. Реа лизуются все признаки и свойства клеток и организмов благодаря белкам, структуру которых в первую очередь и определяют последовательности нуклеотидов ДНК. Поэтому первостепенное значение в процессах метаболизма играет именно биосинтез нуклеиновых кислот и белка. Структурной единицей наследственной информации является ген.
Гены, генетический код и его свойства
Наследственная информация в клетке не является монолитной, она разбита на отдельные «слова» — гены.
Ген — это элементарная единица генетической информации.
Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, дали нам понимание того, что у человека всего около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество бессмысленных участков, повторов и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы большего количества людей и станет понятно, чем же все-таки они различаются.
Гены, кодирующие первичную структуру белка, рибосомальной или транспортной РНК называются структурными, а гены, обеспечивающие активацию или подавление считывания информации со структурных генов, — регуляторными. Однако даже структурные гены содержат регуляторные участки.
Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода. Его свойствами являются: триплетность, специфичность, универсальность, избыточность и неперекрываемость. Кроме того, в генетическом коде отсутствуют знаки препинания.
Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ, то есть код триплетен. С другой стороны, каждый триплет кодирует только одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве происхождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту может кодировать 2–6 триплетов, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп-кодонами, так как они обозначают окончание синтеза полипептидной цепи.
Последовательность оснований в триплетах ДНК и кодируемые ими аминокислоты
*Стоп-кодон, означающий конец синтеза полипептидной цепи.
Сокращения названий аминокислот:
Ала — аланин
Арг — аргинин
Асн — аспарагин
Асп — аспарагиновая кислота
Вал — валин
Гис — гистидин
Гли — глицин
Глн — глутамин
Глу — глутаминовая кислота
Иле — изолейцин
Лей — лейцин
Лиз — лизин
Мет — метионин
Про — пролин
Сер — серин
Тир — тирозин
Тре — треонин
Три — триптофан
Фен — фенилаланин
Цис — цистеин
Если начать считывание генетической информации не с первого нуклеотида в триплете, а со второго, то произойдет не только сдвижка рамки считывания — синтезированный таким образом белок будет совсем иным не только по последовательности нуклеотидов, но и по структуре и свойствам. Между триплетами отсутствуют какие бы то ни было знаки препинания, поэтому нет никаких препятствий для сдвижки рамки считывания, что открывает простор для возникновения и сохранения мутаций.
Матричный характер реакций биосинтеза
Клетки бактерий способны удваиваться каждые 20–30 минут, а клетки эукариот — каждые сутки и даже чаще, что требует высокой скорости и точности репликации ДНК. Кроме того, каждая клетка содержит сотни и тысячи копий многих белков, особенно ферментов, следовательно, для их воспроизведения неприемлем «штучный» способ их производства. Более прогрессивным способом является штамповка, которая позволяет получить многочисленные точные копии продукта и к тому же снизить его себестоимость. Для штамповки необходима матрица, с которой осуществляется оттиск.
В клетках принцип матричного синтеза заключается в том, что новые молекулы белков и нуклеиновых кислот синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).
Биосинтез белка и нуклеиновых кислот
Репликация ДНК. ДНК представляет собой двухцепочечный биополимер, мономерами которого являются нуклеотиды. Если бы биосинтез ДНК происходил по принципу ксерокопирования, то неизбежно возникали бы многочисленные искажения и погрешности в наследственной информации, которые в конечном итоге привели бы к гибели новых организмов. Поэтому процесс удвоения ДНК происходит иным, полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией (от лат. репликацио — повторение). В результате репликации образуются две абсолютно точные копии материнской молекулы ДНК, каждая из которых несет по одной копии материнской.
Процесс репликации на самом деле крайне сложен, так как в нем участвует целый ряд белков. Одни из них раскручивают двойную спираль ДНК, другие разрывают водородные связи между нуклеотидами комплементарных цепей, третьи (например, фермент ДНК-полимераза) подбирают по принципу комплементарности новые нуклеотиды и т. д. Образовавшиеся в результате репликации две молекулы ДНК в процессе деления расходятся по двум вновь образующимся дочерним клеткам.
Ошибки в процессе репликации возникают крайне редко, однако если они и происходят, то очень быстро устраняются как ДНК-полимеразами, так и специальными ферментами репарации, поскольку любая ошибка в последовательности нуклеотидов может привести к необратимому изменению структуры и функций белка и, в конечном итоге, неблагоприятно сказаться на жизнеспособности новой клетки или даже особи.
Биосинтез белка. Как образно выразился выдающийся философ XIX века Ф. Энгельс: «Жизнь есть форма существования белковых тел». Структура и свойства белковых молекул определяются их первичной структурой, т. е. последовательностью аминокислот, зашифрованной в ДНК. От точности воспроизведения этой информации зависит не только существование самого полипептида, но и функционирование клетки в целом, поэтому процесс синтеза белка имеет огромное значение. Он, по-видимому, является самым сложным процессом синтеза в клетке, поскольку здесь участвует до трехсот различных ферментов и других макромолекул. Кроме того, он протекает с высокой скоростью, что требует еще большей точности.
В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.
Транскрипция (от лат. транскрипцио — переписывание) — это биосинтез молекул иРНК на матрице ДНК.
Поскольку молекула ДНК содержит две антипараллельных цепи, то считывание информации с обеих цепей привело бы к образованию совершенно различных иРНК, поэтому их биосинтез возможен только на одной из цепей, которую называют кодирующей, или кодогенной, в отличие от второй, некодирующей, или некодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности. Этот процесс может протекать как в ядре, так и в органоидах, имеющих собственную ДНК, — митохондриях и пластидах.
Синтезированные в процессе транскрипции молекулы иРНК проходят сложный процесс подготовки к трансляции (митохондриальные и пластидные иРНК могут оставаться внутри органоидов, где и происходит второй этап биосинтеза белка). В процессе созревания иРНК к ней присоединяются первые три нуклеотида (АУГ) и хвост из адениловых нуклеотидов, длина которого определяет, сколько копий белка может синтезироваться на данной молекуле. Только потом зрелые иРНК покидают ядро через ядерные поры.
Параллельно в цитоплазме происходит процесс активации аминокислот, в ходе которого аминокислота присоединяется к соответствующей свободной тРНК. Этот процесс катализируется специальным ферментом, на него затрачивается АТФ.
Трансляция (от лат. трансляцио — передача) — это биосинтез полипептидной цепи на матрице иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).
Для начала трансляции (инициации) к готовой к синтезу молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону (АУГ) подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь. Рибосома передвигается на один кодон иРНК; первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется и шаг за шагом полипептидная цепь удлиняется, т. е. происходит ее элонгация.
Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
Для ускорения синтеза определенных белковых молекул к молекуле иРНК могут присоединяться последовательно несколько рибосом, которые образуют единую структуру — полисому.
«Биосинтез белка. Репликация ДНК»
Раздел ЕГЭ: 2.6. Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот
К реакциям матричного синтеза относят репликацию ДНК, синтез и-РНК на ДНК (транскрипцию) и синтез белка на и-РНК (трансляцию), а также синтез РНК или ДНК на РНК вирусов.
Биосинтез белка — это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах. В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.
Репликация ДНК
Структура молекулы ДНК, установленная Дж. Уотсоном и Ф. Криком в 1953 г., отвечала тем требованиям, которые предъявлялись к молекуле-хранительнице и передатчику наследственной информации. Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов. Процесс удвоения ДНК происходит полуконсервативным способом: молекула ДНК расплетается, и на каждой из цепей синтезируется новая цепь по принципу комплементарности. Процесс самовоспроизведения молекулы ДНК, обеспечивающий точное копирование наследственной информации и передачу ее из поколения в поколение, называется репликацией.
Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях. Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться. Этот процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.
Репликация — это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.
Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.
Биосинтез белка и нуклеиновых кислот
В биосинтезе белка выделяют два основных этапа: транскрипцию и трансляцию.
Транскрипция — это биосинтез молекул иРНК на соответствующих участках ДНК. Транскрипция происходит только на одной цепи ДНК, которая называется кодирующей, в отличие от другой — некодирующей, или кодогенной. Обеспечивает процесс переписывания специальный фермент РНК-полимераза, который подбирает нуклеотиды РНК по принципу комплементарности.
Синтезированные в процессе транскрипции в ядре молекулы иРНК покидают его через ядерные поры, а митохондриальные и пластидные иРНК остаются внутри органоидов. После транскрипции происходит процесс активации аминокислот, в коде которой аминокислота присоединяется к соответствующей свободной тРНК.
Трансляция — это биосинтез полипептидной цепи на молекуле иРНК, при котором происходит перевод генетической информации в последовательность аминокислот полипептидной цепи.
Второй этап синтеза белка чаще всего происходит в цитоплазме, например на шероховатой ЭПС. Для его протекания необходимы наличие рибосом, активация тРНК, в ходе которой они присоединяют соответствующие аминокислоты, присутствие ионов Mg2+, а также оптимальные условия среды (температура, рН, давление и т. д.).
Для начала транскрипции (инициации) к молекуле иРНК присоединяется малая субъединица рибосомы, а затем по принципу комплементарности к первому кодону АУГ подбирается тРНК, несущая аминокислоту метионин. Лишь после этого присоединяется большая субъединица рибосомы. В пределах собранной рибосомы оказываются два кодона иРНК, первый из которых уже занят. К соседнему с ним кодону присоединяется вторая тРНК, также несущая аминокислоту, после чего между остатками аминокислот с помощью ферментов образуется пептидная связь.
Когда рибосома передвигается на один кодон иРНК, первая из тРНК, освободившаяся от аминокислоты, возвращается в цитоплазму за следующей аминокислотой, а фрагмент будущей полипептидной цепи как бы повисает на оставшейся тРНК. К новому кодону, оказавшемуся в пределах рибосомы, присоединяется следующая тРНК, процесс повторяется, и шаг за шагом полипептидная цепь удлиняется, то есть происходит ее элонгация.
Окончание синтеза белка (терминация) происходит, как только в молекуле иРНК встретится специфическая последовательность нуклеотидов, которая не кодирует аминокислоту (стоп-кодон). После этого рибосома, иРНК и полипептидная цепь разделяются, а вновь синтезированный белок приобретает соответствующую структуру и транспортируется в ту часть клетки, где он будет выполнять свои функции.
Трансляция является весьма энергоемким процессом, поскольку на присоединение одной аминокислоты к тРНК расходуется энергия одной молекулы АТФ, еще несколько используются для продвижения рибосомы по молекуле иРНК.
Репликация ДНК и синтез белка в клетке протекают по принципу матричного синтеза, поскольку новые молекулы нуклеиновых кислот и белков синтезируются в соответствии с программой, заложенной в структуре ранее существовавших молекул тех же нуклеиновых кислот (ДНК или РНК).
Это конспект для 10-11 классов по теме «Биосинтез белка. Репликация ДНК».
Читайте также другие конспекты, относящиеся к разделу ЕГЭ 2.6:
- Генетическая информация в клетке. Гены, генетический код и его свойства.
- Вернуться в Кодификатор ЕГЭ.
Философ Фридрих Энгельс в своем знаменитом определении сказал, что жизнь является способом существования белковых тел. В каждом живом организме безостановочно идет сложный процесс, требующий немалых энергетических затрат, — синтезируются и созревают белки. Общая схема биосентеза белка такова: ДНК — иРНК — белок.
Биосинтез белка делится на два главных этапа. Во-первых, из аминокислот синтезируется полипептидная цепь. Этот этап проходит на рибосомах при участии молекул двух типов РНК, информационной и транспортной. Во-вторых, с полипептидной цепью происходят посттрансляционные модификации. Образно представить весь этот процесс можно как крошечную железную дорогу, по которой постоянно, от одной станции к другой, снуют паровозы с прицепленными гружеными вагонами.
Трансляция
1. Синтез полипептидных белковых цепей по матрице иРНК, который производится рибосомами, называется трансляцией.
2. Полисома — система рибосом в виде цепи, используемая для увеличения количества производимых белков. Через нее может проходить одна и та же иРНК.
3. Первым делом иРНК должна получить некую информацию. Транскрипция — процесс перенесения информации с ДНК на иРНК в ядре по принципу комплементарности. Далее иРНК идет в цитоплазму для синтеза белка на ее матрице.
4. Как ДНК проходит подготовку к транскрипции? При помощи ферментов двойная связь ДНК раскручивается, разрываются водородные связи.
5. Значительная часть ДНК, как и ее копия иРНК являются некодирующими. Кодирующие части иРНК называют экзонами, некодирующие интронами. Для «отбрасывания» некодирующих участков происходит сплайсинг — вырезание интронов с помощью ферментов.
6. Как аминокислоты доставляются к рибосомам? С помощью тРНК, по форме напоминающей клеверный лист и состоящей из 70–90 нуклеотидов.
7. Сколько видов тРНК в клетке? Столько же, сколько кодонов (триплетов), шифрующих аминокислоты — 64. Кодоны — это триплеты нуклеотидов в иРНК. Пример триплета — АГЦ (аденин, гуанин, цитозин). Каждое азотистое основание, например, аденин, входит в состав какого-то нуклеотида.
8. Вверху в тРНК имеется триплет, присоединяющийся к кодонам иРНК. Это антикодон.
9. Фермент кодаза присоединяет аминокислоту к тРНК. Причем он присоединяет строго ту аминокислоту, которая кодируется кодоном иРНК — триплетом, комплементарным антикодону тРНК.
10. Для связывания одной аминокислоты с тРНК тратится одна молекула АТФ.
11. Аминокислота отрывается от тРНК в тот момент, когда тРНК подходит к рибосоме и ее антикодон узнает кодон иРНК по принципу комплементарности.
12. В акцепторном участке рибосомы приходящая тРНК присоединяется к своему кодону иРНК, причем аминокислота присоединяет к себе растущую цепь белка — образуется пептидная связь.
13. В донорный участок рибосомы тРНК перемещается вместе с кодоном иРНК и с аминокислотой, цепь удлиняется на одну аминокислоту. На место данной тРНК в акцепторный участок идет новая тРНК.
14. Разные полипептидные цепи отделяются друг от друга своеобразными «знаками препинания», тремя триплетами — УАА, УАГ, УГА. Ни одна тРНК не имеет антикодонов, комплементарных данным триплетам, потому она не сможет поступить в акцепторный участок.
15. Какая аминокислота стоит в начале синтезируемого полипептида в рибосоме прокариот? Формилметионин, она соответствует антикодону АУГ иРНК. Данная измененная форма аминокислоты метионина является «заглавной буквой» фразы и прямиком следует в донорный участок рибосомы. С нее начинается синтез любой белковой цепи у бактерий, митохондрий, хлоропластов. У эукариот гены ядра не кодируют эту аминокислоту. После того как синтез полипептидной цепи закончен, формилметионин отщепляется от нее и отсутствует в готовом белке.
16. Что происходит с тРНК после выполнения ее роли? С помощью фермента кодазы к ней будет присоединена та же аминокислота, и тРНК продолжит функционировать.
17. Посттрансляционная модификация — формирование структур белка: вторичной, третичной и четвертичной. В этом процессе участвуют ферменты и затрачивается энергия.
1. Основные этапы биосинтеза белков.
Генетический код
2. Регуляция экспрессии генов
1. Основные этапы биосинтеза белков. Генетический код
Биосинтез белков в клетках представляет
собой последовательность реакций
матричного типа, в ходе которых
последовательная передача наследственной
информации с одного типа молекул на
другой приводит к образованию полипептидов
с генетически обусловленной структурой.
Биосинтез белков представляет собой
начальный этап реализации, или экспрессии
генетической информации. К главным
матричным процессам, обеспечивающим
биосинтез белков, относятсятранскрипция
ДНКитрансляция мРНК. Транскрипция
ДНК заключается в переписывании
информации с ДНК на мРНК (матричную, или
информационную РНК). Трансляция мРНК
заключается в переносе информации с
мРНК на полипептид. Общая характеристика
реакций матричного синтеза дана в главе
3. Последовательность матричных реакций
при биосинтезе белков можно представить
в виде схемы 1.
Схема1
нетранскрибируемая цепь ДНК |
А Т Г |
Г Г Ц |
Т А Т |
транскрибируемая цепь ДНК |
Т А Ц |
Ц Ц Г |
А Т А |
транскрипция |
|
|
|
кодоны мРНК |
А У Г |
Г Г Ц |
У А У |
трансляция |
|
|
|
антикодоны тРНК |
У А Ц |
Ц Ц Г |
А У А |
аминокислоты белка |
метионин |
глицин |
тирозин |
На схеме видно, что генетическая
информация о структуре белка хранится
в виде последовательности триплетов
ДНК. При этом лишь одна из цепей ДНК
служит матрицей для транскрипции (такая
цепь называется транскрибируемой).
Вторая цепь является комплементарной
по отношению к транскрибируемой и не
участвует в синтезе мРНК.
Молекула мРНК служит матрицей для
синтеза полипептида на рибосомах.
Триплеты мРНК, кодирующие определенную
аминокислоту, называются кодоны.
В трансляции принимают участие молекулы
тРНК. Каждая молекул тРНК содержитантикодон– распознающий триплет,
в котором последовательность нуклеотидов
комплементарна по отношению к определенному
кодону мРНК. Каждая молекула тРНК
способна переносить строго определенную
аминокислоту. Соединение тРНК с
аминокислотой называетсяаминоацил–тРНК.
Молекула тРНК по общей конформации
напоминает клеверный лист на черешке.
«Вершина листа» несет антикодон.
Существует 61 тип тРНК с разными
антикодонами. К «черешку листа»
присоединяется аминокислота (существует
20 аминокислот, участвующих в синтезе
полипептида на рибосомах). Каждой
молекуле тРНК с определенным антикодоном
соответствует строго определенная
аминокислота. В то же время, определенной
аминокислоте обычно соответствует
несколько типов тРНК с разными
антикодонами. Аминокислота ковалентно
присоединяется к тРНК с помощью ферментов
– аминоацил-тРНК-синтетаз. Эта реакция
называется аминоацилированием тРНК.
На рибосомах к определенному кодону
мРНК с помощью специфического белка
присоединяется антикодон соответствующей
молекулы аминоацил-тРНК. Такое связывание
мРНК и аминоацил-тРНК называется
кодонзависимым. На рибосомах
аминокислоты соединяются между собой
с помощьюпептидных связей, а
освободившиеся молекулы тРНК уходят
на поиски свободных аминокислот.
Рассмотрим подробнее основные этапы
биосинтеза белков.
1 этап.Транскрипция ДНК. На
транскрибируемой цепи ДНК с помощью
ДНК-зависимой РНК-полимеразы достраивается
комплементарная цепь мРНК. Молекула
мРНК является точной копией
нетранскрибируемой цепи ДНК с той
разницей, что вместо дезоксирибонуклеотидов
в ее состав входят рибонуклеотиды, в
состав которых вместо тимина входит
урацил.
2 этап.Процессинг (созревание)
мРНК. Синтезированная молекула
мРНК (первичный транскрипт) подвергается
дополнительным превращениям. В большинстве
случаев исходная молекула мРНК разрезается
на отдельные фрагменты. Одни фрагменты
–интроны– расщепляются до
нуклеотидов, а другие –экзоны–
сшиваются в зрелую мРНК. Процесс
соединения экзонов «без узелков»
называетсясплайсинг.
Сплайсинг характерен для эукариот и
архебактерий, но иногда встречается и
у прокариот. Существует несколько видов
сплайсинга. Сущность альтернативного
сплайсингазаключается в том, что
одни и те же участки исходной мРНК могут
быть и интронами, и экзонами. Тогда
одному и тому же участку ДНК соответствует
несколько типов зрелой мРНК и,
соответственно, несколько разных форм
одного и того же белка. Сущностьтранс–сплайсингазаключается в
соединение экзонов, кодируемых разными
генами (иногда даже из разных хромосом),
в одну зрелую молекулу мРНК.
3 этап.Трансляция мРНК.
Трансляция (как и все матричные процессы)
включает три стадии:инициацию(начало),элонгацию(продолжение) итерминацию(окончание).
Инициация. Сущность инициации
заключается в образовании пептидной
связи между двумя первыми аминокислотами
полипептида.
Первоначально образуется инициирующий
комплекс, в состав которого входят:
малая субъединица рибосомы, специфические
белки (факторы инициации) и специальная
инициаторная метиониновая тРНК с
аминокислотой метионином – Мет–тРНКМет.
Инициирующий комплекс узнает начало
мРНК, присоединяется к ней и скользит
до точки инициации (начала) биосинтеза
белка: в большинстве случаев этостартовый
кодонАУГ. Между стартовым кодоном
мРНК и антикодоном метиониновой тРНК
происходит кодонзависимое связывание
с образованием водородных связей. Затем
происходит присоединение большой
субъединицы рибосомы.
При объединении субъединиц образуется
целостная рибосома, которая несет два
активных центра (сайта): А–участок
(аминоацильный, который служит для
присоединения аминоацил-тРНК) иР–участок
(пептидилтрансферазный, который служит
для образования пептидной связи между
аминокислотами).
Первоначально Мет–тРНКМетнаходится наА–участке, но затем
перемещается наР–участок. На
освободившийсяА–участок
поступает аминоацил-тРНК с антикодоном,
который комплементарен кодону мРНК,
следующему за кодоном АУГ. В нашем
примере это Гли–тРНКГлис
антикодоном ЦЦГ, который комплементарен
кодону ГГЦ. В результате кодонзависимого
связывания между кодоном мРНК и
антикодоном аминоацил-тРНК образуются
водородные связи. Таким образом, на
рибосоме рядом оказываются две
аминокислоты, между которыми образуется
пептидная связь. Ковалентная связь
между первой аминокислотой (метионином)
и её тРНК разрывается.
После образования пептидной связи между
двумя первыми аминокислотами рибосома
сдвигается на один триплет. В результате
происходит транслокация (перемещение)
инициаторной метиониновой тРНКМетза пределы рибосомы. Водородная связь
между стартовым кодоном и антикодоном
инициаторной тРНК разрывается. В
результате свободная тРНКМетотщепляется и уходит на поиск своей
аминокислоты.
Вторая тРНК вместе с аминокислотой (в
нашем примере Гли–тРНКГли) в
результате транслокации оказывается
наР–участке, аА–участок
освобождается.
Элонгация. Сущность элонгации
заключается в присоединении последующих
аминокислот, то есть в наращивании
полипептидной цепи. Рабочий цикл рибосомы
в процессе элонгации состоит из трех
шагов: кодонзависимого связывания мРНК
и аминоацил-тРНК наА–участке,
образования пептидной связи между
аминокислотой и растущей полипептидной
цепью и транслокации с освобождениемА–участка.
На освободившийся А–участок
поступает аминоацил-тРНК с антикодоном,
соответствующим следующему кодону мРНК
(в нашем примере это Тир–тРНКТирс антикодоном АУА, который комплементарен
кодону УАУ).
На рибосоме рядом оказываются две
аминокислоты, между которыми образуется
пептидная связь. Связь между предыдущей
аминокислотой и её тРНК (в нашем примере
между глицином и тРНКГли)
разрывается.
Затем рибосома смещается еще на один
триплет, и в результате транслокации
тРНК, которая была на Р–участке
(в нашем примере тРНКГли), оказывается
за пределами рибосомы и отщепляется от
мРНК.А–участок освобождается,
и рабочий цикл рибосомы начинается
сначала.
Терминация. Сущность терминации
заключается в окончании синтеза
полипептидной цепи.
В конце концов, рибосома достигает
такого кодона мРНК, которому не
соответствует ни одна тРНК (и ни одна
аминокислота). Существует три таких
нонсенс–кодона: УАА («охра»), УАГ
(«янтарь»), УГА («опал»). На этих кодонах
мРНК рабочий цикл рибосомы прерывается,
и наращивание полипептида прекращается.
Рибосома под воздействием определенных
белков вновь разделяется на субъединицы.
Модификация белков.
Как правило, синтезированный полипептид
подвергается дальнейшим химическим
превращениям. Исходная молекула может
разрезаться на отдельные фрагменты;
затем одни фрагменты сшиваются, другие
гидролизуются до аминокислот. Простые
белки могут соединяться с самыми
разнообразными веществами, образуя
гликопротеины, липопротеины,
металлопротеины, хромопротеины и другие
сложные белки. Кроме того, аминокислоты
уже в составе полипептида могут
подвергаться химическим превращениям.
Например, аминокислота пролин,
входящая в состав белкапроколлагена,
окисляется догидроксипролина. В
результате изпроколлагенаобразуетсяколлаген– основной белковый
компонент соединительной ткани.
Реакции модификации белков не являются
реакциями матричного типа. Такие
биохимические реакции называются
ступенчатыми.
Энергетика биосинтеза белков.
Биосинтез белков – очень энергоемкий
процесс. При аминоацилировании тРНК
затрачивается энергия одной связи
молекулы АТФ, при кодонзависимом
связывании аминоацил-тРНК – энергия
одной связи молекулы ГТФ, при перемещении
рибосомы на один триплет – энергия
одной связи еще одной молекулы ГТФ. В
итоге на присоединение аминокислоты к
полипептидной цепи затрачивается около
90 кДж/моль. При гидролизе же пептидной
связи высвобождается лишь 2 кДж/моль.
Таким образом, при биосинтезе большая
часть энергии безвозвратно теряется
(рассеивается в виде тепла).
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #