1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Квадратные и линейные уравнения
Линейное уравнение – уравнение, сводящееся к виду (large{ax+b=0}), где (ane
0, b) – числа.
Линейное уравнение всегда имеет единственное решение (x=-dfrac ba).
Квадратное уравнение – уравнение, сводящееся к виду (large{ax^2+bx+c=0}), где (ane
0,b,c) – числа.
Выражение (D=b^2-4ac) называется дискриминантом квадратного уравнения.
Квадратное уравнение может иметь не более двух корней:
(bullet) если (D>0), то оно имеет два различных корня
[x_1=dfrac{-b+sqrt{D}}{2a} quad text{и} quad x_2=dfrac{-b-sqrt{D}}{2a}]
(bullet) если (D=0), то оно имеет один корень (иногда говорят, что два совпадающих)
[x_1=x_2=-dfrac{b}{2a}]
(bullet) если (D<0), то оно не имеет корней.
(blacktriangleright) Теорема Виета для квадратного уравнения:
Если квадратное уравнение имеет неотрицательный дискриминант, то сумма корней уравнения
[{large{x_1+x_2=-dfrac{b}{a}}}]
а произведение
[{large{x_1cdot x_2=dfrac{c}{a}}}]
(blacktriangleright) Если квадратное уравнение:
(sim) имеет два корня (x_1) и (x_2), то (ax^2+bx+c=a(x-x_1)(x-x_2)).
(sim) имеет один корень (x_1) (иногда говорят, что два совпадающих), то (ax^2+bx+c=a(x-x_1)^2).
(sim) не имеет корней, то квадратный трехчлен (ax^2+bc+c) никогда не может быть равен нулю. Более того, он при всех (x) строго одного знака: либо положителен, либо отрицателен.
(blacktriangleright) Полезные формулы сокращенного умножения:
[begin{aligned}
&x^2-y^2=(x-y)(x+y)\
&(x+y)^2=x^2+2xy+y^2\
&(x-y)^2=x^2-2xy+y^2
end{aligned}]
Задание
1
#305
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (dfrac{2}{9}x = 4dfrac{1}{9}).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Умножим левую и правую часть уравнения на 9. После умножения: (2x = 37), что равносильно (x = 18,5) – подходит по ОДЗ.
Ответ: 18,5
Задание
2
#306
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (-dfrac{4}{3}x = 5dfrac{2}{3}).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Умножим левую и правую часть уравнения на (-3). После умножения: (4x = -17), что равносильно (x = -4,25) – подходит по ОДЗ.
Ответ: -4,25
Задание
3
#310
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (x^2 — 11x + 28 = 0). Если уравнение имеет более одного корня, в ответе укажите больший из них.
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Дискриминант данного уравнения (D = 121 — 28 cdot 4 = 121 — 112 = 9 = 3^2). Корни [x_1 = dfrac{11 + 3}{2} = 7, x_2 = dfrac{11 — 3}{2} = 4] – подходят по ОДЗ. Ответ: (x = 7) – больший корень уравнения.
Ответ: 7
Задание
4
#311
Уровень задания: Равен ЕГЭ
Найдите корень уравнения (2x^2 — 7x + 3 = 0). Если уравнение имеет более одного корня, в ответе укажите меньший из них.
ОДЗ: (x) – произвольное. Решим на ОДЗ:
Дискриминант данного уравнения (D = 49 — 24 = 25 = 5^2). Корни (x_1 = dfrac{7 + 5}{4} = 3, x_2 = dfrac{7 — 5}{4} = 0,5) – подходят по ОДЗ. Ответ: (x = 0,5) – меньший корень уравнения.
Ответ: 0,5
Задание
5
#312
Уровень задания: Равен ЕГЭ
Найдите корень уравнения ((4x + 5)^2 = (4x + 4)^2).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
После упрощения имеем (16x^2 + 40x + 25 = 16x^2 + 32x + 16), что равносильно (8x = -9), откуда (x = -1,125) – подходит по ОДЗ.
Ответ: -1,125
Задание
6
#314
Уровень задания: Равен ЕГЭ
Найдите корень уравнения ((5x + 8)^2 = 160x).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
После упрощения имеем (25x^2 + 80x + 64 = 160x), что равносильно (25x^2 — 80x + 64 = 0), что равносильно ((5x — 8)^2 = 0), что равносильно ((5x — 8)(5x — = 0).
Произведение двух выражений равно нулю в том и только том случае, когда хотя бы одно из них равно 0 и оба выражения не теряют смысл. Отсюда заключаем, что [x = dfrac{8}{5} = 1,6] – единственный корень – подходит по ОДЗ.
Ответ: 1,6
Задание
7
#315
Уровень задания: Равен ЕГЭ
Найдите корень уравнения ((2x + 11)^2 = 88x).
ОДЗ: (x) – произвольное. Решим на ОДЗ:
После упрощения имеем (4x^2 + 44x + 121 = 88x), что равносильно (4x^2 — 44x + 121 = 0), что равносильно ((2x — 11)^2 = 0), что равносильно ((2x — 11)(2x — 11) = 0).
Произведение двух выражений равно нулю в том и только том случае, когда хотя бы одно из них равно 0 и оба выражения не теряют смысл. Отсюда заключаем, что [x = dfrac{11}{2} = 5,5] – единственный корень – подходит по ОДЗ.
Ответ: 5,5
Знакомство школьника с квадратными уравнениями вида (ax²+bx+c=0), где (ane 0), (b), (c) — заданные числа, происходит еще задолго до сдачи ЕГЭ по математике в Москве или любом другом городе РФ, а именно в 8 классе. Несмотря на то, что на изучение материала по данной теме, как правило, отводится немало времени, далеко не все школьники с легкостью решают подобные задачи. Поэтому, готовясь к сдаче выпускного экзамена, школьникам как в Москве, так и в других населенных пунктах РФ необходимо повторить такой раздел алгебры, как квадратные уравнения: в ЕГЭ по математике они обязательно встретятся.
Для того чтобы освежить в памяти основные способы решения подобного задания и способы решения иррациональных уравнений, воспользуйтесь образовательным проектом «Школково». Наши специалисты подготовили для вас в максимально понятной и доступной форме теоретический материал по теме «Квадратные уравнения», подобрали интересные примеры, которые встречаются в ЕГЭ, а также их подробные решения.
Необходимо запомнить
Для решения квадратных уравнений в ЕГЭ по математике следует выучить формулу, по которой вычисляется дискриминант. Она довольная простая: (D=b2−4ac).
Квадратное уравнение, которое вам предстоит решить в ЕГЭ, может иметь не более двух корней. Если вычисленный дискриминант больше 0, то следует использовать следующие формулы:
(x_1=dfrac{-b+sqrt{D}}{2a})
(x_2=dfrac{-b-sqrt{D}}{2a})
Если D = 0, то уравнение имеет один корень (иногда говорят, что 2 равных):
(x_1=x2=dfrac{-b}{2a})
Если дискриминант меньше 0, то уравнение не имеет корней.
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Курс Глицин. Любовь, друзья, спорт и подготовка к ЕГЭ
Каталог заданий.
Линейные, квадратные, кубические уравнения
Пройти тестирование по этим заданиям
Вернуться к каталогу заданий
Версия для печати и копирования в MS Word
1
Тип 5 № 26662
Найдите корень уравнения:
Аналоги к заданию № 26662: 10149 9653 9659 9667 9669 9673 9677 9679 9691 9693 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.2 Рациональные уравнения
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
2
Тип 5 № 26663
Найдите корень уравнения:
Аналоги к заданию № 26663: 9655 10135 9657 9661 9663 9665 9671 9675 9681 9683 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.2 Рациональные уравнения
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
3
Тип 5 № 77368
Решите уравнение
Аналоги к заданию № 77368: 100259 100757 509597 509988 510118 513336 513357 100261 100263 100265 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 1.4.2 Преобразования выражений, включающих операцию возведения в степень, 2.1.2 Рациональные уравнения
Решение
·
·
Курс Д. Д. Гущина
·
Сообщить об ошибке · Помощь
4
Тип 5 № 77369
Решите уравнение
Аналоги к заданию № 77369: 100759 100787 100761 100763 100765 100767 100769 100771 100773 100775 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 1.4.2 Преобразования выражений, включающих операцию возведения в степень, 2.1.2 Рациональные уравнения
Решение
·
·
Курс Д. Д. Гущина
·
2 комментария · Сообщить об ошибке · Помощь
5
Тип 5 № 77371
Найдите корень уравнения Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Аналоги к заданию № 77371: 100881 101379 524042 624069 624103 100883 100885 100887 100889 100891 … Все
Кодификатор ФИПИ/Решу ЕГЭ: 2.1.1 Квадратные уравнения, 2.1.2 Рациональные уравнения
Решение
·
·
Курс Д. Д. Гущина
·
3 комментария · Сообщить об ошибке · Помощь
Пройти тестирование по этим заданиям
Задания по теме «Линейные уравнения»
Открытый банк заданий по теме линейные уравнения. Задания B10 из ЕГЭ по математике (профильный уровень)
Задание №930
Условие
На верфи инженеры проектируют новый аппарат для погружения на небольшие глубины. Конструкция имеет кубическую форму, а значит, действующая на аппарат выталкивающая (архимедова) сила, выражаемая в ньютонах, будет определяться по формуле F_A=pgl^3, где
l — длина ребра куба в метрах,
p — плотность воды ( p = 1000 кг/м 3 ),
g — ускорение свободного падения (считайте g = 9,8 Н/кг ).
Какой может быть максимальная длина ребра куба, чтобы обеспечить его эксплуатацию в условиях, когда выталкивающая сила при погружении будет не больше, чем 264,600 Н ? Ответ выразите в метрах.
Решение
Решим неравенство F_A leqslant 264,600;, 1000cdot9,8cdot l^3leqslant264,600,, 98l^3leqslant2646,, l^3leqslant27,, lleqslant3. Максимальная длина ребра куба равна 3 метрам.
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Линейные, квадратные, кубические уравнения
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Линейные уравнения
Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$
Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.
$5 (5 + 3х) — 10х = 8$
$25 + 15х — 10х = 8$
Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.
$15х — 10х = 8 — 25$
Приведем подобные слагаемые.
$5х = -17$ — это конечный результат преобразований.
После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = /$
Квадратные уравнения
Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.
Числа $a, b, c$ называются коэффициентами квадратного уравнения.
- $a$ — старший коэффициент;
- $b$ — средний коэффициент;
- $c$ — свободный член.
Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.
Решение неполных квадратных уравнений
Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.
1. Вынесем общий множитель $x$ за скобки.
Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:
2. Решаем получившиеся уравнения каждое отдельно.
Вынесем х как общий множитель за скобки:
Приравняем каждый множитель к нулю и найдем корни уравнения.
$x = 0$ или $4х — 5 = 0$
$х_1 = 0 х_2 = 1,25$
Ответ: $х_1 = 0; х_2 = 1,25$
Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$
Для решения данного неполного квадратного уравнения выразим $x^2$.
При решении последнего уравнения возможны два случая:
2. $D = 0$. В данном случае решение даёт два двукратных корня:
Извлечем кубический корень из обеих частей
Соберем известные слагаемые в правой части
Дробно рациональные уравнения
Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.
Чтобы решить дробное уравнение, необходимо:
- найти общий знаменатель дробей, входящих в уравнение;
- умножить обе части уравнения на общий знаменатель;
- решить получившееся целое уравнение;
- исключить из его корней те, которые обращают в ноль общий знаменатель.
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x · x + 1 · x — <3·x>/ = 0$
3. решаем полученное уравнение
Решим вторым устным способом, т.к. $а + с = b$
Тогда $х_1 = — 1, х_2 = <3>/<4>$
4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $х_1 = — 1, х_2 = <3>/<4>$
При решении уравнения с двумя дробями можно использовать основное свойство пропорции.
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
Воспользуемся основным свойством пропорции
Раскроем скобки и соберем все слагаемые в левой части уравнения
Решим данное квадратное уравнение первым устным способом, т.к.
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
источники:
http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij
http://examer.ru/ege_po_matematike/teoriya/kvadratnye_uravneniya
Задания по теме «Квадратные, кубические и линейные уравнения»
Открытый банк заданий по теме квадратные, кубические и линейные уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)
Задание №879
Условие
Найдите корень уравнения x^2-19x+90=0.
Если уравнение имеет более одного корня, укажите меньший из них.
Решение
Меньший из корней равен 9 .
Ответ
Задание №878
Условие
Найдите корень уравнения frac<5><11>x=11frac<4><11>.
Решение
Ответ
Задание №280
Условие
Найдите корень уравнения frac<3><11>x=27frac<9><11>.
Решение
Ответ
Задание №279
Условие
Найдите корень уравнения 2x^2-17x-9=0 . Если уравнение имеет более одного корня, укажите меньший из них.
Решение
Меньший корень равен -0,5.
Ответ
Задание №45
Условие
Найдите корень уравнения: frac<6><13>x^2=19frac <1>
Если уравнение имеет несколько корней, то запишите наибольший из них.
Решение
x^2=left ( frac<13> <2>right )^2
Наибольший из корней равен frac<13><2>=6,5 .
Линейные, квадратные, кубические уравнения
Равенство, содержащее неизвестное число, обозначенное буквой, называется уравнением. Выражение, стоящее слева от знака равенства, называется левой частью уравнения, а выражение, стоящее справа, — правой частью уравнения.
Линейные уравнения
Линейным называется такое уравнение, в котором неизвестное $x$ находится в числителе уравнения и без показателей. Например: $2х – 5 = 3$
Линейные уравнения сводятся к виду $ax = b$, которое получается при помощи раскрытия скобок, приведения подобных слагаемых, переноса слагаемых из одной части уравнения в другую, а также умножения или деления обеих частей уравнения на число, отличное от нуля.
$5 (5 + 3х) — 10х = 8$
$25 + 15х — 10х = 8$
Перенесем неизвестные слагаемые в левую часть уравнения, а известные в правую. При переносе из одной части в другую, у слагаемого меняется знак на противоположный.
$15х — 10х = 8 — 25$
Приведем подобные слагаемые.
$5х = -17$ — это конечный результат преобразований.
После преобразований к виду $ax = b$, где, a=0, корень уравнения находим по формуле $х = /$
Квадратные уравнения
Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.
Числа $a, b, c$ называются коэффициентами квадратного уравнения.
- $a$ — старший коэффициент;
- $b$ — средний коэффициент;
- $c$ — свободный член.
Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.
Решение неполных квадратных уравнений
Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.
1. Вынесем общий множитель $x$ за скобки.
Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:
2. Решаем получившиеся уравнения каждое отдельно.
Вынесем х как общий множитель за скобки:
Приравняем каждый множитель к нулю и найдем корни уравнения.
$x = 0$ или $4х — 5 = 0$
$х_1 = 0 х_2 = 1,25$
Ответ: $х_1 = 0; х_2 = 1,25$
Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$
Для решения данного неполного квадратного уравнения выразим $x^2$.
При решении последнего уравнения возможны два случая:
2. $D = 0$. В данном случае решение даёт два двукратных корня:
Извлечем кубический корень из обеих частей
Соберем известные слагаемые в правой части
Дробно рациональные уравнения
Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.
Чтобы решить дробное уравнение, необходимо:
- найти общий знаменатель дробей, входящих в уравнение;
- умножить обе части уравнения на общий знаменатель;
- решить получившееся целое уравнение;
- исключить из его корней те, которые обращают в ноль общий знаменатель.
1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
2. находим общий знаменатель дробей и умножаем на него обе части уравнения
$4x · x + 1 · x — <3·x>/ = 0$
3. решаем полученное уравнение
Решим вторым устным способом, т.к. $а + с = b$
Тогда $х_1 = — 1, х_2 = <3>/<4>$
4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Ответ: $х_1 = — 1, х_2 = <3>/<4>$
При решении уравнения с двумя дробями можно использовать основное свойство пропорции.
Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)
Воспользуемся основным свойством пропорции
Раскроем скобки и соберем все слагаемые в левой части уравнения
Решим данное квадратное уравнение первым устным способом, т.к.
В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.
Задание №1. Простейшие уравнения. Профильный ЕГЭ по математике
В задании №1 варианта ЕГЭ вам встретятся всевозможные уравнения: квадратные и сводящиеся к квадратным, дробно-рациональные, иррациональные, степенные, показательные и логарифмические и даже тригонометрические. Видите, как много нужно знать, чтобы справиться с заданием! И еще ловушки и «подводные камни», которые ждут вас в самом неожиданном месте.
Вот список тем, которые стоит повторить:
Уравнения, сводящиеся к квадратным
1. Решите уравнение . Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
Кажется, что уравнение очень простое. Но иногда здесь ошибаются даже отличники. А вот шестиклассник бы не ошибся.
С левой частью уравнения все понятно. Дробь умножается на А в правой части — смешанное число Его целая часть равна 19, а дробная часть равна Запишем это число в виде неправильной дроби:
Выбираем меньший корень.
Ответ: — 6,5.
2. Решите уравнение
Возведем в квадрат левую часть уравнения. Получим:
Дробно-рациональные уравнения
3. Найдите корень уравнения
Перенесем единицу в левую часть уравнения. Представим 1 как и приведем дроби к общему знаменателю:
Это довольно простой тип уравнений. Главное — внимательность.
Иррациональные уравнения
Так называются уравнения, содержащие знак корня — квадратного, кубического или n-ной степени.
4. Решите уравнение:
Выражение под корнем должно быть неотрицательно, а знаменатель дроби не равен нулю.
Значит, .
Возведём обе части уравнения в квадрат:
Условие при этом выполняется.
5. Решите уравнение Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
А в этом уравнении есть ловушка. Решите его самостоятельно и после этого читайте дальше.
Выражение под корнем должно быть неотрицательно. И сам корень — величина неотрицательная. Значит, и правая часть должна быть больше или равна нуля. Следовательно, уравнение равносильно системе:
Решение таких уравнений лучше всего записывать в виде цепочки равносильных переходов:
Мы получили, что . Это единственный корень уравнения.
Типичная ошибка в решении этого уравнения такая. Учащиеся честно пишут ОДЗ, помня, что выражение под корнем должно быть неотрицательно:
Возводят обе части уравнения в квадрат. Получают квадратное уравнение: Находят его корни: или Пишут в ответ: -9 (как меньший из корней). В итоге ноль баллов.
Теперь вы знаете, в чем дело. Конечно же, число -9 корнем этого уравнения быть не может.
6. Решите уравнение . Если уравнение имеет более одного корня, в ответе запишите больший из корней.
Запишем решение как цепочку равносильных переходов.
Показательные уравнения
При решении показательных уравнений мы пользуемся свойством монотонности показательной функции.
7. Решите уравнение
Вспомним, что Уравнение приобретает вид: Функция монотонно возрастает и каждое свое значение принимает только один раз. Степени равны, их основания, значит, и показатели равны.
8. Решите уравнение
Функция монотонно возрастает и каждое свое значение принимает только один раз. Степени равны, их основания, значит, и показатели равны.
9. Решите уравнение
Представим в виде степени с основанием 3 и воспользуемся тем, что
Логарифмические уравнения
Решая логарифмические уравнения, мы также пользуемся монотонностью логарифмической функции: каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, значит, равны и сами числа.
И конечно, помним про область допустимых значений логарифма:
Логарифмы определены только для положительных чисел;
Основание логарифма должно быть положительно и не равно единице.
10. Решите уравнение:
Область допустимых значений: . Значит,
Представим 2 в правой части уравнения как — чтобы слева и справа в уравнении были логарифмы по основанию 5.
Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом
11. Решите уравнение:
Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:
12. Решите уравнение:
Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:
Записываем решение как цепочку равносильных переходов.
13. Решите уравнение. Если уравнение имеет более одного корня, в ответе запишите меньший из корней.
В этом уравнении тоже есть ловушка. Мы помним, что основание логарифма должно быть положительно и не равно единице.
Первое уравнение мы получили просто из определения логарифма.
Квадратное уравнение имеет два корня: и
Очевидно, корень является посторонним, поскольку основание логарифма должно быть положительным. Значит, единственный корень уравнения:
Тригонометрические уравнения (Часть 1 ЕГЭ по математике)
Тригонометрические уравнения? В первой части вариантов ЕГЭ? — Да. Причем это задание не проще, чем задача 13 из второй части варианта Профильного ЕГЭ.
14. Найдите корень уравнения: В ответе запишите наибольший отрицательный корень.
Типичная ошибка — решать это уравнение в уме. Мы не будем так делать! Несмотря на то, что это задание включено в первую части варианта ЕГЭ, оно является полноценным тригонометрическим уравнением, причем с отбором решений.
Сделаем замену Получим:
Получаем решения: Вернемся к переменной x.
Поделим обе части уравнения на и умножим на 4.
Первой серии принадлежат решения
Вторая серия включает решения
Наибольший отрицательный корень — тот из отрицательных, который ближе всех к нулю. Это
15. Решите уравнение В ответе напишите наименьший положительный корень.
Сделаем замену Получим: Решения этого уравнения:
Вернемся к переменной х:
Умножим обе части уравнения на 4 и разделим на
Выпишем несколько решений уравнения и выберем наименьший положительный корень:
Наименьший положительный корень
Мы разобрали основные типы уравнений, встречающихся в задании №1 Профильного ЕГЭ по математике. Конечно, это не все, и видов уравнений в этой задаче существует намного больше. Именно поэтому мы рекомендуем начинать подготовку к ЕГЭ по математике не с задания 1, а с текстовых задач на проценты, движение и работу и основ теории вероятностей.
Успеха вам в подготовке к ЕГЭ!
источники:
http://examer.ru/ege_po_matematike/teoriya/kvadratnye_uravneniya
http://ege-study.ru/ru/ege/materialy/matematika/zadanie-1-prostejshie-uravneniya/
Умножение – деление
Начнем сразу же с примера
( displaystyle 4x=16)
Смотрим и соображаем: что нам не нравится в этом примере? Неизвестное все в одной части, известные – в другой, но что-то нам мешает… И это что-то – четверка, так как если бы ее не было, все было бы идеально – икс равен числу – именно так, как нам и нужно!
Как можно от неё избавиться? Перенести вправо мы не можем, так как тогда нам нужно переносить весь множитель (мы же не можем ее взять и оторвать от ( displaystyle x)), а переносить весь множитель тоже не имеет смысла…
Пришло время вспомнить про деление, в связи с чем разделим все как раз на ( displaystyle 4)! Все – это означает и левую, и правую часть. Так и только так! Что у нас получается?
( displaystyle x=4)
Вот и ответ.
Посмотрим теперь другой пример:
( displaystyle frac{1}{2}x=3)
Догадываешься, что нужно сделать в этом случае? Правильно, умножить левую и правую части на ( displaystyle 2)! Какой ты получил ответ? Правильно. ( displaystyle 6).
ВАЖНО: при делении, либо умножении на какое-либо число, действие совершается как в левой, так и в правой части уравнения
Наверняка все про тождественные преобразования ты и так уже знал. Считай, что мы просто освежили эти знания в твоей памяти и настало время для нечто большего…
Например, для решения нашего большого примера:
( displaystyle {{left( {x}-6 right)}^{2}}+{{left( x+3 right)}^{2}}=2{{x}^{2}})
Как мы уже говорили ранее, глядя на него, не скажешь, что данное уравнение является линейным, но нам необходимо раскрыть скобки и осуществить тождественные преобразования. Так что начнем!
Для начала вспоминаем формулы сокращенного умножения, в частности, квадрат суммы и квадрат разности.
Если ты не помнишь, что это такое и как раскрываются скобки, настоятельно рекомендую почитать тему «Формулы сокращенного умножения», так как эти навыки пригодятся тебе при решении практически всех примеров, встречающихся на экзамене.
Раскрыл? Сравниваем:
( displaystyle begin{array}{l}{{left( {x}-6 right)}^{2}}+{{left( x+3 right)}^{2}}=2{{x}^{2}}\{{x}^{2}}+36-12x+{{x}^{2}}+9+6x=2{{x}^{2}}end{array})
Теперь пришло время привести подобные слагаемые. Помнишь, как нам в тех же начальных классах говорили «не складываем мухи с котлетами»? Вот напоминаю об этом.
Складываем все отдельно – множители, у которых есть ( displaystyle {{x}^{2}}), множители, у которых есть ( displaystyle x) и остальные множители, в которых нет неизвестных.
Как приведешь подобные слагаемые, перенеси все неизвестные влево, а все, что известно, – вправо. Что у тебя получилось?
( displaystyle begin{array}{l}{{left( {x}-6 right)}^{2}}+{{left( x+3 right)}^{2}}=2{{x}^{2}}\2{{x}^{2}}-2{{x}^{2}}-12x+6x+36+9=0\-6x=-45end{array})
Как ты видишь, иксы в квадрате исчезли, и здесь совершенно обычное линейное уравнение. Осталось только найти ( displaystyle x)!
( displaystyle x=frac{-45}{-6}=7,5)
И напоследок скажу еще одну очень важную вещь про тождественные преобразования.
Линейные уравнения с двумя переменными
Теперь перейдем к чуть более сложному – линейным уравнениям с двумя переменными.
Линейные уравнения с двумя переменными имеют вид:
( displaystyle ax+by+c=0), где ( displaystyle a), ( displaystyle b) и ( displaystyle c) – любые числа и ( displaystyle ane 0).
Как ты видишь, вся разница только в том, что в уравнение добавляется еще одна переменная. А так все то же самое – здесь нет иксов в квадрате, нет деления на переменную и т.д. и т.п.
Какой бы привести тебе жизненный пример… Возьмем того же Васю. Допустим, он решил, что каждому из 3-ех друзей он даст одинаковое количество яблок, а ( displaystyle 2) яблока оставит себе.
Сколько яблок нужно купить Васе, если каждому другу он даст по ( displaystyle 1) яблоку? А по ( displaystyle 2)? А если по ( displaystyle 3)?
Зависимость количества яблок, которое получит каждый человек к общему количеству яблок, которое необходимо приобрести будет выражена уравнением:
( displaystyle y=3x+2), где
- ( displaystyle x) – количество яблок, которое получит ( displaystyle 1) человек (( displaystyle 1), или ( displaystyle 2), или ( displaystyle 3));
- ( displaystyle 2) – количество яблок, которое Вася возьмет себе;
- ( displaystyle y) – сколько всего яблок нужно купить Васе с учетом количества яблок на человека.
Решая эту задачу, мы получим, что если одному другу Вася даст ( displaystyle 1) яблоко, то ему необходимо покупать ( displaystyle 5) штук, если даст ( displaystyle 2) яблока – ( displaystyle и т.д.
И вообще. У нас две переменные. Почему бы не построить эту зависимость на графике?
Строим и отмечаем значение наших ( displaystyle x), то есть точки, с координатами ( displaystyle 1), ( displaystyle 2) и ( displaystyle 3)!
Как ты видишь, ( displaystyle x) и ( displaystyle y) зависят друг от друга линейно, отсюда и название уравнений – «линейные».
Графическое изображение линейных и нелинейных уравнений
Абстрагируемся от яблок и рассмотрим графически различные уравнения. Посмотри внимательно на два построенных графика – прямой и параболы, заданными произвольными функциями:
Найди и отметь на обоих рисунках точки ( displaystyle x), соответствующие ( displaystyle y=2).
Что у тебя получилось?
Ты видишь, что на графике первой функции одному ( displaystyle y) соответствует один ( displaystyle x).
То есть ( displaystyle y) и ( displaystyle x) линейно зависят друг от друга, что не скажешь про вторую функцию.
Конечно, ты можешь возразить, что на втором графике ( displaystyle y=-1) так же соответствует ( displaystyle 1) икс – ( displaystyle x=0) , но это только одна точка, то есть частный случай, так как ты все равно можешь найти такой ( displaystyle y), которому соответствует не только один ( displaystyle x).
Да и построенный график никак не напоминает линию, а является параболой.
Повторюсь, еще раз:
Графиком линейного уравнения должна быть прямая линия.
С тем, что уравнение не будет линейным, если у нас идет ( displaystyle x) в какой-либо степени – это понятно на примере параболы, хотя для себя ты можешь построить еще несколько простых графиков, например ( displaystyle y={{x}^{3}}) или ( displaystyle y={{x}^{4}}).
Но я тебя уверяю – ни один из них не будет представлять собой ПРЯМУЮ ЛИНИЮ.
Не веришь? Построй, а затем сравни с тем, что получилось у меня:
А что будет, если мы разделим что-то на ( displaystyle x), например, какое-то число? Будет ли линейная зависимость ( displaystyle y) и ( displaystyle x)?
Не будем рассуждать, а будем строить! Например, построим график функции ( displaystyle y=frac{1}{x}).
Как-то не выглядит построенное прямой линией… соответственно, уравнение не линейное.
ЕГЭ Профиль №18. Линейные уравнения, неравенства и системы уравнений с параметрами
Лучшие репетиторы для сдачи ЕГЭ
Задания по теме «Квадратные, кубические и линейные уравнения»
Открытый банк заданий по теме квадратные, кубические и линейные уравнения. Задания B5 из ЕГЭ по математике (профильный уровень)
Геометрические фигуры на плоскости: вычисление величин с использованием углов
Задание №879
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения x^2-19x+90=0.
Если уравнение имеет более одного корня, укажите меньший из них.
Показать решение
Решение
x_{1,2}=frac{19pmsqrt{19^2-4cdot90}}{2},
x_1=9,
x_2=10.
Меньший из корней равен 9.
Ответ
9
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №878
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения frac{5}{11}x=11frac{4}{11}.
Показать решение
Решение
frac{5}{11}x=frac{125}{11},
x=frac{125}{11}:frac{5}{11},
x=frac{125}{5},
x=25.
Ответ
25
Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №280
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения frac{3}{11}x=27frac{9}{11}.
Показать решение
Решение
x=27frac{9}{11}:frac{3}{11},
x=frac{306cdot11}{11cdot3},
x=102.
Ответ
102
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №279
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения 2x^2-17x-9=0. Если уравнение имеет более одного корня, укажите меньший из них.
Показать решение
Решение
x_{1,2}= frac{17pmsqrt{17^2-4cdot2cdot(-9)}}{2cdot2}= frac{17pm19}{4};
x_1=frac{17-19}{4}=-frac12;
x_2=frac{17+19}{4}=9;
Меньший корень равен -0,5.
Ответ
-0,5
Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.
Задание №45
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения: frac{6}{13}x^2=19frac{1}{2}
Если уравнение имеет несколько корней, то запишите наибольший из них.
Показать решение
Решение
Выполним преобразования:
frac{6}{13}x^2=frac{39}{2}
x^2=frac{39cdot13}{2cdot6}
x^2=frac{13cdot13}{2cdot2}
x^2=left ( frac{13}{2} right )^2
x_1=frac{13}{2},enspace x_2=-frac{13}{2}
Наибольший из корней равен frac{13}{2}=6,5.
Ответ
6,5
Задание №44
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения: (x-6)^2=-24x
Показать решение
Решение
Воспользуемся формулой:
(apm b)^2=a^2pm 2ab+b^2
Получим:
x^2-12x+36=-24x
x^2+12x+36=0
(x+6)^2=0
x+6=0
x=-6
Ответ
-6
Задание №35
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения: x^2+9=(x-1)^2
Показать решение
Решение
Возведем в квадрат вторую часть уравнения, используя формулу:
(a-b)^2=a^2-2ab+b^2
Получим:
x^2+9=x^2-2x+1
-2x+1=9
-2x=8
x=-4
Ответ
-4
Задание №28
Тип задания: 5
Тема:
Квадратные, кубические и линейные уравнения
Условие
Найдите корень уравнения: (6x-13)^2=(6x-11)^2
Показать решение
Решение
Возведем в квадрат обе части уравнения, используя формулу:
(a-b)^2=a^2-2ab+b^2
Получим:
36x^2-156x+169=36x^2-132x+121
-156x+132x=121-169
-24x=-48
x=2
Ответ
2
Лучшие репетиторы для сдачи ЕГЭ
Сложно со сдачей ЕГЭ?
Звоните, и подберем для вас репетитора: 78007750928