Площадь сечения цилиндра егэ

Всего: 14    1–14

Добавить в вариант

Радиус основания цилиндра равен 26, а его образующая равна 9. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 24. Найдите площадь этого сечения.

Раздел кодификатора ФИПИ: Цилиндр


Площадь осевого сечения цилиндра равна 4. Найдите площадь боковой поверхности цилиндра, деленную на  Пи .


Радиус основания цилиндра равен 13, а его образующая равна 18. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 12. Найдите площадь этого сечения.

Источник: Демонстрационная версия ЕГЭ — 2015., Копия Апробация базового ЕГЭ по математике, 13—17 октября: вариант 153691., Пробный экзамен Саратов 2016. Вариант 3.


Радиус основания цилиндра равен 20, а его образующая равна 8. Сечение, параллельное оси цилиндра, удалено от неё на расстояния, равное 12. Найдите площадь этого сечения.

Источник: Пробный экзамен Саратов 2016. Вариант 2.


Радиус основания цилиндра равен 15, а его образующая равна 14. Сечение, параллельное оси цилиндра, удалено от неё на расстояния, равное 12. Найдите площадь этого сечения.

Источник: Пробный экзамен Саратов 2016. Вариант 4.


Радиус основания цилиндра равен 5, а его образующая равна 15. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 4. Найдите площадь этого сечения.


Радиус основания цилиндра равен 25, а его образующая равна 15. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 24. Найдите площадь этого сечения.


Радиус основания цилиндра равен 10, а его образующая равна 19. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 6. Найдите площадь этого сечения.


Радиус основания цилиндра равен 25, а его образующая равна 16. Сечение, параллельное оси цилиндра, удалено от неё на расстояние, равное 15. Найдите площадь этого сечения.


Радиус основания цилиндра равен 15, а его образующая равна 19. Сечение, параллельное оси цилиндра, удалено от неё на расстояния, равное 9. Найдите площадь этого сечения.

Источник: Пробный экзамен Саратов 2016. Вариант 1.


Прямолинейный участок трубы длиной 6 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 14 см. Ответ дайте в квадратных сантиметрах.


Прямолинейный участок трубы длиной 3 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 32 см. Ответ дайте в квадратных сантиметрах.


Прямолинейный участок трубы длиной 3 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 27 см. Ответ дайте в квадратных сантиметрах.


Прямолинейный участок трубы длиной 2 м, имеющей в сечении окружность, необходимо покрасить снаружи (торцы трубы открыты, их красить не нужно). Найдите площадь поверхности, которую необходимо покрасить, если внешний обхват трубы равен 44 см. Ответ дайте в квадратных сантиметрах.

Всего: 14    1–14

10
Сен 2013

Категория: 02 Стереометрия

02. Цилиндр.

2013-09-10
2022-09-11


Задача 1. Радиус основания цилиндра равен 7, высота равна 10. Найдите площадь боковой поверхности цилиндра, деленную на pi.

43c768219f42a2422e6ad98cf49b1f5a

Решение: + показать


Задача 2. Площадь боковой поверхности цилиндра равна 18pi, а диаметр основания равен 9. Найдите высоту цилиндра.

43c768219f42a2422e6ad98cf49b1f5a

Решение:  + показать


Задача 3. Длина окружности основания цилиндра равна 5, высота равна 2. Найдите площадь боковой поверхности цилиндра.

43c768219f42a2422e6ad98cf49b1f5a

Решение:  + показать


Задача 4. Площадь осевого сечения цилиндра равна 23. Найдите площадь боковой поверхности цилиндра, деленную на  pi.

 

Решение:  + показать


Задача 5. Объём первого цилиндра равен 48 м^3. У второго цилиндра высота в три раза больше, а радиус основания в два раза меньше, чем у первого. Найдите объём второго цилиндра (в м^3).

па

Решение:  + показать


Задача 6. Одна цилиндрическая кружка вдвое выше второй, зато вторая в полтора раза шире. Найдите отношение объема второй кружки к объему первой.

па

Решение:  + показать


Задача 7. В цилиндрический сосуд налили 1200 см^3  воды. Уровень воды при этом достигает высоты 12 см. В жидкость полностью погрузили деталь. При этом уровень жидкости в сосуде поднялся на 10 см. Чему равен объем детали? Ответ выразите в см^3.

Решение:  + показать


Задача 8. В цилиндрический сосуд налили 600 см^3 воды. В воду полностью погрузили деталь. При этом уровень жидкости в сосуде увеличился в 1,6 раза. Найдите объем детали.

Ответ выразите в см^3.

Решение:  + показать


Задача 9. В цилиндрическом сосуде уровень жидкости достигает 27 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 3 раза больше первого? Ответ выразите в сантиметрах.

Решение:  + показать


Задача 10. Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


Задача 11.  Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


Задача 12. Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


Задача 13. Найдите объем V части цилиндра, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


тест

Вы можете пройти тест “Цилиндр”

Автор: egeMax |

комментария 3

Печать страницы

Площадь боковой поверхности цилиндра

Формула площади боковой поверхности цилиндра представляет собой произведение длины основания на его высоту:

А теперь рассмотрим задачу, в которой нам потребуеhА теперь рассмотрим задачу, в которой нам потребуется рассчитать полную площадь цилиндра. В заданной фигуре высота h = 4 см, r = 2 см. Найдем полную площадь цилиндра.Для начала рассчитаем площадь оснований: 
Теперь рассмотрим пример расчета площади боковой поверхности цилиндра. В развернутом виде она представляет прямоугольник. Его площадь рассчитывается по приведенной выше формуле. Подставим в нее все данные: 
Полная площадь круга представляет собой сумму двойной площади основания и боковой: 
Таким образом, используя формулы площади основан


Таким образом, используя формулы площади оснований и боковой поверхности фигуры, мы смогли найти полную площадь поверхности цилиндра.Осевое сечение цилиндра представляет собой прямоугольник, в котором стороны равны высоте и диаметру цилиндра.Формула площади осевого сечения цилиндра выводится из формулы расчета площади прямоугольника:Рассмотрим пример расчета площади осевого сечения

  Рассмотрим пример расчета площади осевого сечения цилиндра. Для этого возьмем условия из задачи, указанной выше. Чтобы найти величину нам потребуется диаметр. Мы знаем, что он равен двойному радиусу: 

Подставим данные:

Видео

Формула площади поверхности цилиндра

Полная площадь поверхности цилиндра является суммой его боковой площади поверхности и площади оснований.

S=Sосн+SбокS=S_{text{осн}}+S_{text{бок}}S=Sосн+Sбок

SоснS_{text{осн}}Sосн — площадь оснований; SбокS_{text{бок}}Sбок — площадь боковой поверхности.

При вычислении площади поверхности цилиндра важным фактором является вид цилиндра. От него зависит и конкретная формула для площади.

Сечения конуса

Конусом является фигура вращения прямоугольного треугольника вокруг одного из катетов. Конус имеет одну вершину и круглое основание. Его параметрами также являются радиус r и высота h. Пример конуса, сделанного из бумаги, показан ниже.

Видов конических сечений существует несколько. Пер

Видов конических сечений существует несколько. Перечислим их:

  • круглое;
  • эллиптическое;
  • параболическое;
  • гиперболическое;
  • треугольное.

Они сменяют друг друга, если увеличивать угол наклона секущей плоскости относительно круглого основания. Проще всего записать формулы площади сечения круглого и треугольного.

Круглое сечение образуется в результате пересечения конической поверхности плоскостью, которая параллельна основанию. Для его площади справедлива следующая формула:

S1 = pi*r2*z2/h2

Здесь z — это расстояние от вершины фигуры до образованного сечения. Видно, что если z = 0, то плоскость проходит только через вершину, поэтому площадь S1 будет равна нулю. Поскольку z < h, то площадь изучаемого сечения будет всегда меньше ее значения для основания.

Треугольное получается, когда плоскость пересекает фигуру по ее оси вращения. Формой получившегося сечения будет равнобедренный треугольник, сторонами которого являются диаметр основания и две образующие конуса. Как находить площадь сечения треугольного? Ответом на этот вопрос будет следующая формула:

S2 = r*h

Это равенство получается, если применить формулу для площади произвольного треугольника через длину его основания и высоту.

Геометрическая фигура

Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.

На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.

Здесь отрезок длиной h является его образующей и в

Здесь отрезок длиной h является его образующей и высотой.

Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.

Задания для самостоятельной работы

Задача 10

Имеется некий сосуд цилиндрической формы. Емкость заполнили водой объемом 2000см3. После этого вода поднялась до уровня в 12 см. Затем в жидкость опустили предмет, что привело к ее подъему на 9 см. Требуется вычислить объем предмета, погруженного в воду, в см3.

Задача 11

Сосуд цилиндрической формы заполнен водой до уровня в 16 см. Жидкость перелили в другой сосуд аналогичной формы, диаметр которого в два раза больше по сравнению с диаметром первого. Нужно определить, на какой высоте будет находиться уровень воды во втором сосуде.

Задача 12

Имеется два цилиндра. Объем первой фигуры составляет 12м3. Высота второй фигуры в три раза больше по сравнению с первой, а радиус ее основания в два раза меньше, чем у первого цилиндра. Требуется определить, чему равен объем второго цилиндра.

Задача 13

Емкость в форме цилиндра заполнили водой в количестве 6см3. В жидкость опустили какой-то предмет, что привело к подъему уровня воды в 1,5 раза. Необходимо вычислить объем погруженного в жидкость предмета.

Задача 14

При сравнении двух кружек в форме цилиндра выяснили, что первая в два раза выше, чем вторая. Вместе с тем вторая кружка в 1,5 раза шире по сравнению с первой. Требуется найти отношение объема второй кружки к объему первой.

Теги

МБОУ Пожарская СОШ Сергачского района Нижегородской области

Учитель математики первой категории Зюляева Л.Ю.

Задания для подготовки к ЕГЭ

11 класс по теме «Цилиндр»

Задачи  по готовым чертежам

1 вариант

1. Осевое сечение цилиндра – квадрат со стороной 6 см. Найти сумму высоты и радиуса основания цилиндра.

Описание: Описание: http://opengia.ru/resources/27058-MAE10B910-innerimg0/repr-0.jpg

2. Радиус основания цилиндра равен 2м, высота  3м. Найти диагональ осевого сечения.

Описание: Описание: http://opengia.ru/resources/27058-MAE10B910-innerimg0/repr-0.jpg

3. Длина окружности основания цилиндра равна 1. Площадь боковой поверхности равна 2. Найдите высоту цилиндра.

Описание: Описание: http://opengia.ru/resources/27058-MAE10B910-innerimg0/repr-0.jpg

Задачи  по готовым чертежам

2 вариант

1. Осевое сечение цилиндра – квадрат со стороной 8 см. Найти сумму высоты и радиуса основания цилиндра.

Описание: Описание: http://opengia.ru/resources/27058-MAE10B910-innerimg0/repr-0.jpg

2. Радиус основания цилиндра равен 4м, высота  6м. Найти диагональ осевого сечения.

Описание: Описание: http://opengia.ru/resources/27058-MAE10B910-innerimg0/repr-0.jpg

3. Длина окружности основания цилиндра равна 2. Площадь боковой поверхности равна 1. Найдите высоту цилиндра.

Описание: Описание: http://opengia.ru/resources/27058-MAE10B910-innerimg0/repr-0.jpg

Типы задач на ЕГЭ по теме «Площадь боковой поверхности цилиндра»

1        Диагональ осевого сечения цилиндра равна 48. Угол между этой диагональю и образующей равен 300. Найдите радиус цилиндра.

2.        Радиус основания цилиндра равен 6, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π.

3. Диагональ осевого сечения цилиндра наклонена к плоскости основания под углом 450 и равна 8√2 см. Найдите площадь боковой поверхности цилиндра, деленную на π  .

4.Во сколько раз увеличится площадь боковой поверхности цилиндра, если его высоту и радиус увеличить в три раза?

Типы задач

№ задачи

1 тип задач

Задачи, решаемые в одно действие с помощью т. Пифагора или свойства прямоугольного треугольника

2 тип задач

Задачи, решаемые в одно действие с помощью формулы площади боковой поверхности.

3 тип задач

Задачи, решаемые в два действия с помощью т. Пифагора и формулы площади боковой поверхности.

Задания по теме «Площадь поверхности цилиндра»

ЕГЭ 2015 Задания из Открытого банка заданий. Математика. Геометрия.

Прототипы заданий №12

Задание №27133

Длина окружности основания цилиндра равна 3, высота равна 2. Найдите площадь боковой поверхности цилиндра.

http://opengia.ru/resources/27133-MAOB10B971-innerimg0/repr-0.jpg

Задание №245358

Длина окружности основания цилиндра равна 3. Площадь боковой поверхности равна 6. Найдите высоту цилиндра.

Задание №27058

 Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на π.

http://opengia.ru/resources/27058-MAE10B910-innerimg0/repr-0.jpg

                           Проверочная тестовая работа                            Вариант 1

№1. Радиус основания цилиндра равен 2 см, высота – 5 см, тогда площадь боковой поверхности, деленная  на π,  равна:

    40;    10;    20;   4

№2. В цилиндре радиуса осевым сечением является квадрат, а площадь основания равна 16π кв.дм. Найдите площадь полной поверхности цилиндра деленную  на π.

    80;   96;   64;   32

№3. Радиус основания цилиндра в два раза меньше образующей, равной 4, тогда площадь боковой поверхности,  деленная  на π,  равна:

   16;   32;   4;   8

№4. Площадь полной поверхности цилиндра, полученного вращением прямоугольника со сторонами 4 см и 7 см вокруг его большей стороны,  деленная  на π,  равна:

    56;   72;   88;   48

№5. Если площадь боковой поверхности цилиндра равна 64π кв.м, а высота – 4 м, тогда радиус равен:

   16;   8;   26;   8π

№6. Осевым сечением цилиндра является прямоугольник со сторонами 10 и 16 см, то площадь основания цилиндра,  деленная  на π,  может быть равна:  

    256;   100;   24;   64

№7. Осевым сечением цилиндра является прямоугольник со сторонами 12 и 8 см, то площадь боковой поверхности цилиндра, деленная  на π,  может быть равна:

   36;   64;   48;   96

Проверочная тестовая работа

Вариант 2.

№1. Диаметр основания цилиндра равен 4 см, высота – 3 см, тогда площадь боковой поверхности,  деленная  на π,  равна:         

40;         10;   12;    4

№2. В цилиндре радиуса осевым сечением является квадрат, а площадь основания равна 9π кв.дм. Найдите площадь полной поверхности цилиндра деленную  на π .

40;           54;   60;   32

№3. Радиус основания цилиндра в три раза меньше образующей, равной 6, тогда площадь боковой поверхности,  деленная  на π,  равна:

24;           32;   4;   8

№4. Площадь полной поверхности цилиндра, полученного вращением прямоугольника со сторонами 4 см и 7 см вокруг его меньшей стороны, деленная  на π, равна:

56;           105;   154;   48

№5.        Если площадь боковой поверхности цилиндра равна 64π кв.м, а радиус – 8м, тогда образующая равна:         

16;           4;   26;   8π

№6.        Осевым сечением цилиндра является прямоугольник со сторонами 10 и 16 см, то площадь основания цилиндра,  деленная  на π,  может быть равна:          

256;   100;   24;   25

№7.        Осевым сечением цилиндра является прямоугольник со сторонами 6 и 8 см, то площадь боковой поверхности цилиндра может быть равна:         

9;           64;   36;   48

Ключ к тестовой работе (оба варианта)

№ задачи

1

2

3

4

5

6

7

Ответ

3

2

1

3

2

4

4

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Площадь почтовой марки егэ
  • Площадь поверхности призмы егэ
  • Площадь поверхности многогранников егэ
  • Площадь поверхности многогранника егэ формула
  • Площадь плавательного бассейна егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии