Площади объемных фигур формулы для егэ

Подготовка к ЕГЭ по математике не может обойтись без изучения геометрии. Задачи на расчет площади и объема фигур, нахождение углов и длин сторон встречаются и в первой, и во второй части. В базовой математике ЕГЭ формулы на объем и площадь представлены в справочных материалах. Тем, кто сдает профильную, придется выучить их. Рассмотрим основную теорию.

Площадь — величина, которая есть у плоских фигур. Ее можно посчитать для квадрата, прямоугольника, параллелограмма, треугольника, ромба, трапеции, круга. Объем присущ трехмерным объектам, таким как куб, шар, параллелепипед, призма, пирамида, конус. Объемные тела условно делят на многогранники (состоят из нескольких многоугольников) и поверхности вращения (есть условная линия, вдоль которой вращается плоская фигура). На вычисление объема это не влияет.

В таблицах представлены основные формулы объемов и площадей фигур для ЕГЭ. Мы советуем сохранить их себе, чтобы пользоваться при подготовке к ЕГЭ и быстро повторить теорию перед экзаменом. 

многогранники

площадь

тела вращения

трапеция и круг егэ

прямоугольный треугольник егэ

Формулы объёма и площади поверхности. Многогранники.

Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

  1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
  2. Элементарная логика.

Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.


Куб
V=a^3 S = 6a^2
d=asqrt{3}, d- диагональ

Параллелепипед
V=S_text{OCH}h, h - высота

Прямоугольный параллелепипед
V=abc S = 2ab+2bc+2ac
d=sqrt{a^2+b^2+c^2}

Призма
V=S_text{OCH}h S = 2S_text{OCH}+

Пирамида
V=frac{1}{3}S_text{OCH}h S = S_text{OCH}+

Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

Задача 1.Объём куба равен 12. Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Решение:

Пирамида в кубе
Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб :-)

Очевидно, их 6, поскольку у куба 6 граней.

Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.

Разберем задачи, где требуется найти площадь поверхности многогранника.

Мы рассмотрим призмы и пирамиды. Начнем с призмы.

Площадь полной поверхности призмы можно найти как сумму площадей всех ее граней. А это площади верхнего и нижнего оснований плюс площадь боковой поверхности.

Площадь боковой поверхности призмы – это сумма площадей боковых граней, которые являются прямоугольниками. Она равна периметру основания, умноженному на высоту призмы.

Задача 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Многогранник на рисунке – это прямая призма с высотой 12.

P_text{OCH}=8+6+6+2+2+4=28.

Пирамида в кубе

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

S_1=6cdot 6=36 (больший квадрат), S_2=2cdot 4=8 (маленький прямоугольник), S_text{OCH}=36+8=44

Подставим все данные в формулу: и найдем площадь поверхности многогранника:

S=28cdot12+2cdot44=336+88=424.

Ответ: 424.

Задача 3. Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

Перевернем многогранник так, чтобы получилась прямая призма с высотой 1.
Площадь поверхности этой призмы находится по формуле:

P_text{OCH}=4+5+2+1+2+4=18.

Пирамида в кубе

Найдем площадь основания. Для этого разделим его на два прямоугольника и посчитаем площадь каждого:

S_1=4cdot4=16;~S_2=2cdot1=2 (большой прямоугольник), S_text{OCH}=16+2=18 (маленький прямоугольник).

Найдем площадь полной поверхности: =18cdot1+2cdot18=54

Ответ: 54

Задача 4.Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Покажем еще один способ решения задачи.

Посмотрим, как получился такой многогранник. Можно сказать, что к «кирпичику», то есть прямоугольному параллелепипеду со сторонами 4, 1 и 3, сверху приклеен «кубик», все стороны которого равны 1.

И значит, площадь поверхности данного многогранника равна сумме площадей поверхностей прямоугольного параллелепипеда со сторонами 4,1,3 и
куба со стороной 1, без удвоенной площади квадрата со стороной 1:

S=((4+1+4+1)cdot 3+2cdot 4 cdot 1)+6cdot 1-2cdot 1=42.

Почему мы вычитаем удвоенную площадь квадрата? Представьте себе, что нам надо покрасить это объемное тело. Мы красим все грани параллелепипеда, кроме квадрата на верхней его грани, где на него поставлен кубик. И у куба мы покрасим все грани, кроме этого квадрата.

Ответ: 42

Задача 5. . Основание прямой призмы – треугольник со сторонами 5 см и 3 см и углом 120° между ними. Наибольшая из площадей боковых граней равна 35 см². Найдите площадь боковой поверхности призмы.

Пирамида в кубе

Решение.

Пусть АВ = 5 см, ВС = 3 см, тогда angle{ABC}=120^{circ}

Из Delta ABC по теореме косинусов найдем ребро АС:

AC^2=AB^2+BC^2-2cdot ABcdot BC cdot cos120^{circ}

AC^2=25+9-2cdot5cdot3cdotleft(-frac{1}{2}right)=47, ~AC = 7

Отрезок АС – большая сторона Delta ABC, следовательно, ACC_1A_1 - большая боковая грань призмы.

Поэтому ACcdot CC_1=35, или 7cdot h=35, откуда h=5.

(5+3+7)cdot5=75.

Ответ: 75

Теперь две задачи на площадь боковой поверхности пирамиды.

Задача 6. Основанием пирамиды DАВС является треугольник АВС, у которого АВ = АС = 13, ВС = 10; ребро АD перпендикулярно к плоскости основания и равно 9. Найдите площадь боковой поверхности пирамиды.

Пирамида в кубе

Решение.

Площадь боковой поверхности пирамиды – это сумма площадей всех ее боковых граней.

Проведем AKperp BC, тогда BC perp DK (по теореме о 3-х перпендикулярах), то есть DК – высота треугольника DВС.

Delta ABC – равнобедренный (по условию АВ = АС), то высота АК, проведенная к основанию ВС, является и медианой, то есть ВК = КС = 5.

Из прямоугольного Delta ABK получим:

AK=sqrt{AB^2-BK^2}=sqrt{13^2-5^2}=sqrt{169-25}=sqrt{144}=12.

Из прямоугольного Delta DAK имеем:

DK=sqrt{DA^2+AK^2}=sqrt{9^2+12^2}=sqrt{81+144}=sqrt{225}=15.

Delta ADB=Delta ADC (по двум катетам), тогда S_{ADB}=S_{ADC}, следовательно

=2S_{ADB}+S_{BDC},=2cdotfrac{1}{2}cdot13cdot9+frac{1}{2}cdot10cdot15=117+75=192.

Ответ: 192

Задача 8. Стороны основания правильной четырехугольной пирамиды равны 24, боковые ребра равны 37. Найдите площадь поверхности пирамиды.

Пирамида в кубе

Решение:

Так как четырехугольная пирамида правильная, то в основании лежит квадрат, а все боковые грани — равные равнобедренные треугольники.

Площадь поверхности пирамиды равна

=pcdot h+a^2, где р – полупериметр основания, h — апофема (высота боковой грани правильной пирамиды), a – сторона основания.

Значит, полупериметр основания p = 24 cdot 2 = 48.

Апофему найдем по теореме Пифагора:

h=sqrt{37^2-12^2}=sqrt{(37-12)(37+12)}=sqrt{25cdot49}=5cdot7=35

S = 48cdot 35+24^2=1680+576=2256.

Ответ: 2256

Как решать задачи на нахождение объема многогранника сложной формы?

Покажем два способа.

Первый способ

1.Составной многогранник достроить до полного параллелепипеда или куба.
2.Найти объем параллелепипеда.
3.Найти объем лишней части фигуры.
4.Вычесть из объема параллелепипеда объем лишней части.

Второй способ.

1.Разделить составной многогранник на несколько параллелепипедов.
2.Найти объем каждого параллелепипеда.
3.Сложить объемы.

Задача 9. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

1) Достроим составной многогранник до параллелепипеда.

2) Найдем объем параллелепипеда – для этого перемножим его длину, ширину и высоту: V=9cdot 4cdot10=360

3) Найдем объем лишней части, то есть маленького параллелепипеда.

Его длина равна 9 – 4 = 5, ширина 4, высота 7, тогда его объем V_1=5cdot4cdot7=140.

4) Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры: V=360-140=220.

Ответ: 220.

Задача 10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 7, боковое ребро равно 6. Найдите объем призмы.

Пирамида в кубе

Объем призмы равен V=S_{OCH}cdot h, а так как призма прямая, то ее боковое ребро является и высотой, то есть h=6.

Основанием призмы является прямоугольный треугольник c катетами 6 и 7, тогда площадь основания

S_{OCH}=frac{1}{2}cdot ab=frac{1}{2}cdot6cdot7=21.

V=21cdot6=126.

Ответ: 126

Задача 11. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 324 см. На какой высоте будет находиться уровень воды, если ее перелить в другой сосуд, у которого сторона в 9 раз больше, чем у первого? Ответ выразите в сантиметрах.

Пирамида в кубе

Решение.

Объем призмы равен V = S_{OCH}cdot h

Воду перелили в другой такой же сосуд. Это значит, что другой сосуд также имеет форму правильной треугольной призмы, но все стороны основания второго сосуда в 9 раз больше, чем у первого.

Основанием второго сосуда также является правильный треугольник. Он подобен правильному треугольнику в основании первого сосуда. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Если все стороны треугольника увеличить в 9 раз, его площадь увеличится в 9^2 = 81 раз. Мы получили, что площадь основания второго сосуда в 81 раз больше, чем у первого.

Объем воды не изменился, V=S_1cdot h_1=S_2 cdot h_2. Так как S_2=81S_1, высота воды h_2 должна быть в 81 раз меньше, чем h_1. Она равна 324:81 = 4 (см).

Ответ: 4

Задача 12. Объем параллелепипеда ABCDA_1B_1C_1D_1. Найдите объем треугольной пирамиды ABDA_1.

Пирамида в кубе

Решение.
Опустим из вершины A_1 высоту A_1H Н на основание ABCD.

=S_{ABCD}cdot A_1H

=frac{1}{3}S_{ABD}cdot A_1H

Пирамида в кубе

Диагональ основания делит его на два равных треугольника, следовательно, S_{ABD}=frac{1}{2}S_{ABCD}.

Имеем:

ABDA_1=frac{1}{3}S_{ABD}cdot A_1H=frac{1}{3}cdotfrac{1}{2}S_{ABCD}cdot A_1H=frac{1}{6}V_{ABCDA_1B_1C_1D_1}=frac{1}{6}cdot21=3,5.

Ответ: 3,5

Задача 13. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 8, а высота равна 6sqrt{3}.

Пирамида в кубе

Решение.
По формуле объема пирамиды, .

В основании пирамиды лежит правильный треугольник. Его площадь равна S_{OCH}=frac{a^2sqrt{3}}{4}.

S_{OCH}=frac{8^2sqrt{3}}{4}=frac{64sqrt{3}}{4}=16sqrt{3}.

Объем пирамиды V=frac{1}{3}cdot16sqrt{3}cdot6sqrt{3}=16cdot6=96.

Ответ: 96

Задача 14. Через середины сторон двух соседних ребер основания правильной четырехугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объем меньшей из частей, на которые эта плоскость делит призму, если объем призмы равен 32.

Пирамида в кубе

Решение.

По условию, призма правильная, значит, в ее основании лежит квадрат, а высота равна боковому ребру.

Пусть AD=x, тогда S_{OCH}=x^2.

Так как точки М и К – середины АD и DС соответственно, то DM=DK=frac{x}{2}.

S_{MDK}=frac{1}{2}MDcdot DK=frac{1}{2}cdotfrac{x}{2}cdotfrac{x}{2}=frac{1}{8}x^2.

Площадь треугольника MDK, лежащего в основании новой призмы, составляет frac{1}{8} часть площади квадрата в основании исходной призмы.
Высоты обеих призм одинаковые. Согласно формуле объема призмы: V=S_{OCH}cdot h, и значит, объем маленькой призмы в 8 раз меньше объема большой призмы. Он равен 32:8=4.

Ответ: 4

Докажем полезную теорему.

Теорема: Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.

Доказательство:

Пирамида в кубе

Плоскость перпендикулярного сечения призмы перпендикулярна к боковым ребрам, поэтому стороны перпендикулярного сечения призмы являются высотами параллелограммов.

S=a_1l+a_2l+dots+a_nl,

S=(a_1+a_2+dots+a_n)l,

S=P_{perp}cdot l.

Больше задач на формулы объема и площади поверхности здесь.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Формулы объёма и площади поверхности. Многогранники.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
09.03.2023

Все формулы для площадей полной и боковой поверхности тел

1. Площадь полной поверхности куба

a сторона куба

Формула площади поверхности куба,(S):

2. Найти площадь поверхности прямоугольного параллелепипеда

a , b , c стороны параллелепипеда

Формула площади поверхности параллелепипеда, (S):

3. Найти площадь поверхности шара, сферы

R — радиус сферы

Формула площади поверхности шара (S):

4. Найти площадь боковой и полной поверхности цилиндра

r — радиус основания

h — высота цилиндра

Формула площади боковой поверхности цилиндра, (S бок ):

Формула площади всей поверхности цилиндра, (S):

5. Площадь поверхности прямого, кругового конуса

R — радиус основания конуса

H — высота

L — образующая конуса

Формула площади боковой поверхности конуса, через радиус ( R ) и образующую ( L ), (S бок ):

Формула площади боковой поверхности конуса, через радиус ( R ) и высоту ( H ), (S бок ):

Формула площади полной поверхности конуса, через радиус ( R ) и образующую ( L ), (S):

Формула площади полной поверхности конуса, через радиус ( R ) и высоту ( H ), (S):

Формулы объёма и площади поверхности. Многогранники.

Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

  1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
  2. Элементарная логика.

Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.

Ты нашел то, что искал? Поделись с друзьями!

Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

Объём куба равен . Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб 🙂

Очевидно, их 6, поскольку у куба 6 граней.

Иногда в задаче надо посчитать площадь поверхности куба или призмы.

Напомним, что площадь поверхности многогранника — это сумма площадей всех его граней.

В некоторых задачах каждое ребро многогранника увеличили, например, в три раза. Очевидно, что при этом площадь поверхности увеличится в девять раз, а объём — в раз.

Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.

Шпаргалка по геометрии. Площади и объёмы


Скачать эти и другие таблицы: p-v.rar

Предметы ведения РФ

Предметы ведения для 13 задания ЕГЭ по обществознанию.

Тест по теме «Социальная сфера»

2 варианта по 17 вопросов.

Оценивание заданий ОГЭ с развёрнутым ответом

Методические материалы для председателей и членов РПК по проверке выполнения заданий с развёрнутым ответом ОГЭ 2022.

источники:

http://ege-study.ru/ru/ege/materialy/matematika/formuly-obema/

http://4ege.ru/matematika/4670-shpargalka-po-geometrii-ploschadi-i-obemy.html

Параллельность в пространстве

  • Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.
  • Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.
  • Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.
  • Если прямая a, не лежащая в плоскости $α$, параллельна некоторой прямой $b$, которая лежит в плоскости $α$, то прямая a параллельна плоскости $α$.
  • Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым, лежащим в другой плоскости, то такие плоскости параллельны.

Перпендикулярность в пространстве

  • Две прямые называются перпендикулярными, если угол между ними равен $90°$.
  • Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.
  • Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны.
  • Теорема о трех перпендикулярах: если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и самой наклонной.
  • Если из одной точки проведены к плоскости перпендикуляр и наклонные, то:
  1. Перпендикуляр короче наклонных.
  2. Равные наклонные имеют равные проекции на плоскости.
  3. Большей наклонной соответствует большая проекция на плоскости.

Скрещивающиеся прямые

  • Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются.
  • Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей.
  • Расстояние между скрещивающимися прямыми – это расстояние от некоторой точки одной из скрещивающихся прямых до плоскости, проходящей через другую прямую параллельно первой прямой.
  • Угол между скрещивающимися прямыми – это острый угол между двумя пересекающимися прямыми, которые соответственно параллельны заданным скрещивающимся прямым.

Многогранники

Введем общие обозначения

$P_{осн}$ — периметр основания;

$S_{осн}$ — площадь основания;

$S_{бок}$ — площадь боковой поверхности;

$S_{п.п}$ — площадь полной поверхности;

$V$ — объем фигуры.

Название Определение и свойства фигуры Обозначения и формулы объема, площади
Прямоугольный параллелепипед 1. Все двугранные углы прямоугольного параллелепипеда – прямые.
2. Противоположные грани попарно равны и параллельны.

3. Диагонали прямоугольного параллелепипеда равны.

4. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

$B_1D^2=AD^2+DC^2+C_1C^2$

$V=a·b·c$, где $a, b$ и $с$ – длина, ширина и высота.
$S_{бок}=P_{осн}·c=2(a+b)·c$
$S_{п.п}=2(ab+bc+ac)$.
Куб 1. Противоположные грани попарно параллельны.
2. Все двугранные углы куба – прямые.

3. Диагональ куба в $√3$ раз больше его ребра.

$B_1 D=АВ√3$
4. Диагональ грани куба в $√2$ раза больше длины ребра.
$DС1=DC√2$

Пусть $а$ — длина ребра куба, $d$ — диагональ куба, тогда справедливы формулы:
$V=a^3={d^3}/{3√3}$.
$S_{п.п}=6а^2=2d^2$
$R={a√3}/{2}$, где $R$ — радиус сферы, описанной около куба.
$r={a}/{2}$, где $r$ — радиус сферы, вписанной в куб.
Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

  1. Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.
  2. Прямая призма называется правильной, если ее основания – правильные многоугольники.
  3. В правильной четырехугольной призме диагонали точкой пересечения делятся пополам.
$S_{бок}=P_{осн}·h$
$S_{п.п}=S_{бок}+2S_{осн}$
$V=S_{осн}·h$
Пирамида
  1. У треугольной пирамиды есть еще одно название – тетраэдр (четырехгранник).
  2. Пирамида называется правильной, если в ее основании лежит правильный многоугольник, а ее высота приходит в центр основания (в центр описанной окружности). Все боковые ребра правильной пирамиды равны, следовательно, все боковые грани являются равнобедренными треугольниками.
Формулы вычисления объема и площади поверхности правильной пирамиды.
$h_a$ — высота боковой грани (апофема)
$S_{бок}={P_{осн}·h_a}/{2}$
$S_{п.п}=S_{бок}+S_{осн}$
$V={1}/{3} S_{осн}·h$
Усеченная пирамида
  1. Усеченной пирамидой называется многогранник, заключенный между пирамидой и секущей плоскостью, параллельной.
  2. Правильная усечённая пирамида получается при сечении правильной пирамиды плоскостью, параллельной основанию.
  3. У правильной усеченной пирамиды апофемы равны
$V={h(F+f+√{Ff})}/{3}$
Где $F,f$ — площади оснований;
$h$ — высота (расстояние между основаниями);
Для правильной ус. пирамиды
$S_{бок}={(P+p)·a}/{2}$, где $P$ и $p$ – периметры оснований; $а$ – апофема.
Цилиндр
  1. Осевое сечение цилиндра — это прямоугольник, у которого одна сторона равна диаметру основания, а вторая – высоте цилиндра.
  2. Если призму вписать в цилиндр, то ее основаниями будут являться равные многоугольники, вписанные в основание цилиндра, а боковые ребра — образующими цилиндра.
  3. Если цилиндр вписан в призму, то ее основания — равные многоугольники, описанные около оснований цилиндра. Плоскости граней призмы касаются боковой поверхности цилиндра.
  4. Если в цилиндр вписана сфера, то радиус сферы равен радиусу цилиндра и равен половине высоты цилиндра.
    $R_{сферы}=R_{цилиндра}={h_{цилиндра}}/{2}$
$S_{бок.пов.}=2πR·h$
$S_{полной.пов.}=2πR(R+h)$
$V=πR^2·h$
Конус
  1. Осевым сечением конуса является равнобедренный треугольник, основание которого равно двум радиусам, а боковые стороны равны образующим конуса.
  2. Если боковая поверхность конуса – полукруг, то осевым сечением является равносторонний треугольник, угол при вершине равен $60°$.
  3. Если радиус или диаметр конуса увеличить в $n$ раз, то его объем увеличится в $n^2$ раз.
  4. Если высоту конуса увеличить в m раз, то объем конуса увеличится в то же количество раз.
$S_{бок.пов.}=πR·l$
$S_{полной.пов.}=πR^2+πR·l=πR(R+l)$
$V={πR^2·h}/{3}$
Усеченный конус
  1. Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию.
  2. Осевым сечением усеченного конуса является равнобедренная трапеция.
$S_{бок}=πl(R+r)$
$S_{п.п.}=π(R^2+r^2+l(R+r))$
$V={πH(R^2+r^2+Rr)}/{3}$
Где $R$ и $r$ – радиусы оснований; $Н$ — высота усеченного конуса.
Сфера, шар
  1. Тело, ограниченное сферой, называется шаром.
  2. Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара.
  3. Если радиус или диаметр шара увеличить в $n$ раз, то площадь поверхности увеличится в $n^2$ раз, а объем в $n^3$ раз.
$S_{п.п}=4π·R^2=π·d^2$, где $R$ — радиус сферы, $d$ — диаметр сферы
$V={4π·R^3}/{3}={π·d^3}/{6}$, где $R$ — радиус шара, $d$ — диаметр шара.

Тетраэдр

Радиус описанной сферы тетраэдра.

Вокруг тетраэдра можно описать сферу, радиус которой находим по формуле, где $R$ — радиус описанной сферы, $a$ — ребро тетраэдра.

$R={a√6}/{4}$

Радиус вписанной в тетраэдр сферы.

В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже.

Где $r$ — радиус вписанной в тетраэдр сферы,

$a$ — ребро тетраэдра.

$r={a√6}/{12}$

Составные многогранники

Задачи на нахождение объема составного многогранника:

  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Пример:

Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Представим данный многогранник как прямую призму с высотой равной $12$.

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

$P_{осн}=8+6+6+2+2+4=28$

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

$S_1=6·6=36$

$S_2=2·4=8$

$S_осн=36+8=44$

Далее подставим все данные в формулу и найдем площадь поверхности многогранника

$S_{полн.пов.}=28·12+2·44=336+88=424$

Ответ: $424$

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Задачи на нахождение расстояния между точками составного многогранника.

В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.

Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей

$АВ=a_n$ — сторона правильного многоугольника

$R$ — радиус описанной окружности

$r$ — радиус вписанной окружности

$n$ — количество сторон и углов

$a_n=2·R·sin{180°}/{n}$;

$r=R·cos{180°}/{n}$;

$a_n=2·r·tg{180°}/{n}$.

Формула нахождения градусной меры угла в правильном многоугольнике:

$α={(n-2)·180°}/{n}$

Формулы площадей треугольников и многоугольников, которые могут находиться в основании многогранников

В основании лежит треугольник

1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне а

2. $S={a·b·sin⁡α}/{2}$, где $a, b$ — соседние стороны, $α$ — угол между этими соседними сторонами.

3. $S=p·r$, где $r$ — радиус вписанной окружности

4. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности

5. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.

В основании лежит четырехугольник

Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^{2}√3}/{4}$, где $а$ — длина стороны.

2. Квадрат

$S=a^2$, где $а$ — сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^{2}√3}/{4}={3·a^{2}√3}/{2}$, где $а$ — сторона правильного шестиугольника.

Объемы и площади объемных фигур. Формулы для нахождения объема параллелепипеда

Любое геометрическое тело можно охарактеризовать площадью (S) поверхности и объемом (V). Площадь и объем совсем не одно и то же. Объект может иметь сравнительно небольшой V и большую S, например, так устроен мозг человека. Вычислить данные показатели для простых геометрических фигур гораздо проще.

Параллелепипед: определение, виды и свойства

Параллелепипед – это четырехугольная призма, в основании которой находится параллелограмм. Для чего же может потребоваться формула нахождения объема фигуры? Подобную форму имеют книги, упаковочные коробки и еще множество вещей из повседневной жизни. Комнаты в жилых и офисных домах, как правило, являются прямоугольными параллелепипедами. Для установки вентиляции, кондиционеров и определение количества обогревательных элементов в комнате необходимо рассчитать объем помещения.

У фигуры 6 граней – параллелограммов и 12 ребер, две произвольно выбранные грани называют основаниями. Параллелепипед может быть нескольких видов. Различия обусловлены углами между смежными ребрами. Формулы для нахождения V-ов различных многоугольников немного отличаются.

Если 6 граней геометрической фигуры представляют собой прямоугольники, то ее тоже называют прямоугольной. Куб – это частный случай параллелепипеда, в котором все 6 граней представляют собой равные квадраты. В этом случае, чтобы найти V, нужно узнать длину только одной стороны и возвести ее в третью степень.

Для решения задач понадобятся знания не только готовых формул, но свойств фигуры. Перечень основных свойств прямоугольной призмы невелик и очень прост для понимания:

  1. Противолежащие грани фигуры равны и параллельны. Это значит, что ребра расположенные напротив одинаковы по длине и углу наклона.
  2. Все боковые грани прямого параллелепипеда – прямоугольники.
  3. Четыре главные диагонали геометрической фигуры пересекаются в одной точкой, и делятся ею пополам.
  4. Квадрат диагонали параллелепипеда равен суме квадратов измерений фигуры (следует из теоремы Пифагора).

Теорема Пифагора
гласит, что сумма площадей квадратов, построенных на катетах прямоугольного треугольника, равна площади треугольника, построенного на гипотенузе того же треугольника.

Доказательство последнего свойства можно разобрать на изображении представленном ниже. Ход решения поставленной задачи прост и не требует подробных объяснений.

Формула объема прямоугольного параллелепипеда

Формула нахождения для всех видов геометрической фигуры одна: V=S*h, где V- искомый объем, S – площадь основания параллелепипеда, h – высота, опущенная из противоположной вершины и перпендикулярная основанию. В прямоугольнике h совпадает с одной из сторон фигуры, поэтому чтобы найти объем прямоугольной призмы необходимо перемножить три измерения.

Объем принято выражать в см3. Зная все три значения a, b и c найти объем фигуры совсем не сложно. Наиболее часто встречающийся тип задач в ЕГЭ – это поиск объема или диагонали параллелепипеда. Решить многие типовые задания ЕГЭ без формулы объема прямоугольника – невозможно.

Пример задания и оформления его решения приведен на рисунке ниже.

Примечание 1
. Площадь поверхности прямоугольной призмы можно найти, если умножить на 2 сумму площадей трех граней фигуры: основания (ab) и двух смежных боковых граней (bc + ac).

Примечание 2
. Площадь поверхности боковых граней легко узнать умножив периметр основания на высоту параллелепипеда.

Исходя из первого свойства параллелепипедов AB = A1B1, а грань B1D1 = BD. Согласно следствиям из теоремы Пифагора сумма всех углов в прямоугольном треугольнике равна 180°, а катет, лежащий против угла в 30°, равен гипотенузы. Применив данные знания для треугольника, легко находим длину сторон AB и AD. Затем перемножаем полученные значения и вычисляем объем параллелепипеда.

Формула для нахождения объема наклонного параллелепипеда

Чтобы найти объем наклонного параллелепипеда необходимо площадь основания фигуры умножить на высоту, опущенную на данное основание из противоположного угла.

Таким образом, искомый V можно представить в виде h — количества листов с площадью S основания, так объем колоды складывается из V-ов всех карт.

Примеры решения задач

Задания единого экзамена должны быть выполнены за определенное время. Типовые задачи, как правило, не содержать большого количества вычислений и сложных дробей. Часто школьнику предлагают как найти объем неправильной геометрической фигуры. В таких случаях следует помнить простое правило, что общий объем равен сумме V-ов составных частей.

Как видно из примера на изображении выше, ничего сложного в решении подобных задач нет. Задания из более сложных разделов предполагают знания теоремы Пифагора и ее следствий, а так же формулу длины диагонали фигуры. Для успешного решения заданий тестов достаточно заранее ознакомится с образцами типовых задач.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Чтобы решить задачи по геометрии, надо знать формулы — такие, как площадь треугольника или площадь параллелограмма — а также простые приёмы, о которых мы расскажем.

Для начала выучим формулы площадей фигур. Мы специально собрали их в удобную таблицу. Распечатайте, выучите и применяйте!

Конечно, не все формулы по геометрии есть в нашей таблице. Например, для решения задач по геометрии и стереометрии во второй части профильного ЕГЭ по математике применяются и другие формулы площади треугольника. О них мы обязательно расскажем.

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ.

1. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

Ответ: .

2. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Ответ: .

3. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности.

Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Формула расчета объема шестиугольной призмы. Объемы геометрических фигур

Все фигуры, которые ограничены гранями, находящимися в разных плоскостях в пространстве, обладают некоторым объемом. Вычислением этой величины занимается специальный геометрический раздел — стереометрия. В данной статье приведем формулу объема шестиугольной призмы.

Что такое призма?

Очевидно, что прежде чем находить объем геометрической фигуры, следует познакомиться с ней и понять, какими свойствами она обладает. В данном случае речь идет о призме. В стереометрии для этой фигуры приводится следующее определение: призмой называется любой пространственный геометрический объект, который ограничен двумя n-угольниками, находящимися в параллельных плоскостях, и n параллелограммами. Здесь n — любое натуральное число начиная с трех.

Построить фигуру несложно. Для этого следует взять произвольный многоугольник и с помощью одинаковых параллельных друг другу отрезков перенести его в другую плоскость. Получившаяся фигура будет призмой. Отметим, что она, в отличие от конуса, цилиндра и сферы, не является фигурой вращения, то есть ее нельзя получить с помощью вращения вокруг оси какой-либо плоской фигуры.

Выше на рисунке приведен для примера параллелепипед, который является четырехугольной призмой.

Свойства правильной призмы. Формулы площади, объема и длины…

Пространственная геометрическая фигура призма является объектом изучения стереометрии. Ее…

Призма шестиугольная и ее виды

Далее в статье приведем формулу объема призмы шестиугольной. Что представляет собой эта фигура? Любая призма, имеющая в основании шестиугольник, называется шестиугольной.

Она образована двумя шестиугольниками в основаниях и шестью параллелограммами, совокупность которых составляет боковую площадь фигуры. Эта призма имеет 12 вершин, 8 граней или сторон и 18 ребер, 2/3 из которых принадлежат основаниям.

Приведенному описанию элементов соответствуют несколько видов шестиугольной призмы. Во-первых, эта фигура может быть выпуклой или вогнутой, что зависит от шестиугольника в основаниях, во-вторых, призма может быть наклонной и прямой. Разница между ними заключается в том, что в прямой фигуре любая боковая сторона будет перпендикулярна основаниям, а в наклонной фигуре боковые стороны пересекают основания под некоторыми углами, которые отличны от 90o. Обе призмы показаны на рисунке.

Заметим, что условие перпендикулярности боковых сторон и оснований приводит к тому, что параллелограммы прямой призмы становятся прямоугольниками.

Наконец, в-третьих, шестиугольная призма бывает правильной и неправильной. Последней будет любая фигура, которая не является прямой и не обладает правильным шестиугольным основанием. Далее основное внимание будем уделять именно правильной призме.

Свойства правильной призмы. Формулы площади, объема и длины…

Пространственная геометрическая фигура призма является объектом изучения стереометрии. Ее…

Правильный шестиугольник

Для определения объемов геометрических фигур многих классов необходимо знать значение площади их основания. Этот факт справедлив для пирамид, цилиндров, конусов. Призмы тоже не являются исключением.

Чтобы найти площадь основания шестиугольной призмы, следует рассчитать площадь шестиугольника. Проще всего сделать это для правильной фигуры. Для наглядности покажем, что такое правильный шестиугольник.

Видно, что представляет он многоугольник, образованный шестью одинаковыми сторонами, которые пересекаются под углами 120o. Также видно, что в шестиугольник можно вписать окружность некоторого радиуса, а также можно описать его окружностью.

Вычисление площади основания призмы шестиугольной правильной сводится к определению площади приведенной выше фигуры. Если шестиугольник разбить на равносторонние треугольники так, как показано на рисунке, то его площадь будет равна умноженной на 6 площади одного треугольника. Обозначим длину стороны шестиугольника буквой a, тогда для площади S шестиугольника получаем:

S = 6*1/2*a*√3/2*a = 3*√3/2*a2.

Для любого другого шестиугольника, который не является правильным, эта формула будет несправедливой.

Объем правильной шестиугольной призмы. Объем шестиугольной…

Призма — это одна из объемных фигур, свойства которой изучают в школе в курсе пространственной…

Вычислить объем любой призмы несложно, для этого следует знать всего два ее параметра: высоту h и основания площадь S. Расчет объема V осуществляется по следующей формуле:

V = h*S.

Отметим важную вещь: записанное выражение справедливо для любых видов призм, включая вогнутые и наклонные. Тем не менее для произвольной призмы, несмотря на простоту формулы, применять ее бывает сложно. Сложность связана с определением обоих параметров в выражении.

В связи с вышесказанным, рассмотрим конкретную правильную призму с правильным шестиугольным основанием. Если ее высота равна h, а длина стороны равна a, тогда формула объема шестиугольной призмы правильной примет вид:

V = 3*√3/2*h*a2.

При записи этого выражения была подставлена формула для S, приведенная в предыдущем пункте.

Далее решим две задачи, в которых покажем, как найти объем шестиугольной призмы для конкретных случаев.

Задача с известной диагональю

Ниже на рисунке показана правильная призма. Известно, что сторона ее основания равна 9 см. Чему равен объем шестиугольной призмы, если диагональ AB имеет длину 21 см.

Не сложно догадаться, взглянув на рисунок, что треугольник ABC является прямоугольным, причем сторона AB — это гипотенуза. Катет AC является высотой h фигуры. Чтобы вычислить объем призмы, нам необходимо найти длину этого катета. Заметим, что второй катет CB имеет в два раза большую длину, чем сторона основания, то есть 18 см. Применяем теорему Пифагора и получаем:

h = AC = √(AB2-CB2) = √(212-182) ≈ 10,82 см.

Значение высоты мы округлили до сотых долей сантиметра.

Поскольку нам известна высота h и сторона основания a, то можно применить формулу для V. Получаем:

V = 3*√3/2*h*a2 = 3*√3/2*10,82*92 = 2277 см3.

Таким образом, рассмотренная призма имеет объем почти 2,3 литра.

Задача с вписанным в призму цилиндром

Известно, что цилиндр с радиусом 12 см вписан в правильную шестиугольную призму. Объем цилиндра равен 1360 см3. Чему равен объем призмы?

Как было показано, определить объем призмы можно, если знать ее высоту и сторону основания. Начнем с определения стороны. Поскольку радиус r окружности, вписанной в шестиугольник, известен, значит, длину стороны a можно рассчитать так:

a = 2*r/√3.

Понять, откуда взялась эта формула, можно, если учесть, что радиус r является высотой одного из шести равносторонних треугольников шестиугольника.

Теперь вычислим высоту h призмы. Согласно условию задачи, она должна совпадать с высотой цилиндра. Объем же цилиндра рассчитывается по той же формуле, что и для призмы. Имеем:

Vc = So*h = pi*r2*h =>

h = Vc/(pi*r2).

Подставляем выражения для a и h в формулу для V призмы, получаем:

V = 3*√3/2*h*a2 = 3*√3/2*Vc/(pi*r2)*(2*r/√3)**2 = 2*√3*Vc/pi.

Мы пришли к интересному результату: оказывается, объем шестиугольной призмы не зависит от радиуса вписанного цилиндра, а однозначно определяется его объемом. Подставив значение Vc, получаем объем призмы, равный приблизительно 1500 см3.

Volume Formulas — Etsy.de

Etsy больше не поддерживает старые версии вашего веб-браузера, чтобы обеспечить безопасность пользовательских данных. Пожалуйста, обновите до последней версии.

Воспользуйтесь всеми преимуществами нашего сайта, включив JavaScript.


Найдите что-нибудь памятное,
присоединяйтесь к сообществу, делающему добро.

(40 релевантных результатов)

Разница между площадью и объемом

Как мы знаем, геометрия изучает формы. Он имеет дело с плоскими формами и твердыми формами. Мы вычисляем различные термины, связанные с фигурами, такие как длина, ширина, высота, площадь, периметр, объем и т. д. Площадь и объем — два важных понятия, используемых в нашей повседневной жизни. Мы видим вокруг много фигур, таких как квадраты, прямоугольники, круги, многоугольники и т. д. Каждая форма имеет свои уникальные свойства и размеры. Следовательно, каждая Форма имеет разные Площадь и Объем, в зависимости от их измерений. Итак, здесь, на этой странице, мы изучим разницу между площадью и объемом в математике и формулами, связанными с различными фигурами.

Площадь

Площадь — это измерение области, покрытой любыми двумерными геометрическими фигурами. Площадь любой формы зависит от ее размеров. Различные формы имеют разные области. Например, площадь квадрата отличается от площади прямоугольника. Площадь фигуры рассчитывается в квадратных единицах (квадратных единицах).

Предположим, если вы хотите покрасить прямоугольную стену своего дома, вам нужно знать площадь стены, чтобы рассчитать количество краски, необходимой для покраски стены, и стоимость покраски.

Если две фигуры имеют одинаковую форму, нет необходимости, чтобы они имели одинаковую площадь до тех пор, пока их размеры не станут равными. Предположим, что два квадрата имеют стороны s и s1, поэтому площади двух квадратов будут равны, если s = s 1

Объем

Пространство, занимаемое трехмерным объектом, измеряется с точки зрения объема этого объекта. . Объем твердой формы является произведением трех измерений, поэтому объем выражается в кубических единицах. Предположим, объем куба измеряется произведением его длины, ширины и высоты.

Внутренняя часть полого объекта может быть заполнена воздухом или какой-либо жидкостью, которая принимает форму объекта. В таких случаях объем вещества, который может вместить внутренность предмета, называется вместимостью полого предмета. Таким образом, мы можем сказать, что объем объекта — это мера пространства, которое он занимает, а вместимость объекта — это объем вещества, которое может вместить его внутренность.

Площадь и объем Определение

Площадь относится к области, охватываемой объектом. И объем относится к количеству или мощности объекта. Площадь — это двумерный объект, а объем — трехмерный объект. Площадь — это обычная фигура, а Объем — сплошная фигура. Площадь охватывает внешнее пространство, а Объем охватывает внутреннюю емкость. Площадь измеряется в квадратных единицах, а объем измеряется в кубических единицах.

Обычно площадь вычисляется для двухмерных объектов, а объем — для трехмерных.

Вот графическое изображение площади и объема, показывающее соотношение между площадью и объемом.

(Изображение будет загружено в ближайшее время)

Давайте попробуем разобраться в связи между Площадью и Объемом и в чем разница между Площадью и Объемом в деталях.

Таблица формул площади для 2D-фигур

999999999999999999999999999999999999999999999999999999

Name of Geometric Shapes

Area Formula

Variables

Rectangle

Area = l [times] w

l =  length

w  = width

Square

Area  = a 2

a = sides of the square

Triangle

область = ½ [ times ] b [ times ] h

B = основание

H = высота

Trapezoid

9999

. a + b)h

a =base 1

b = base 2

h = vertical height

Parallelogram

Area  = b [times] h

a = сторона

b=основание

h=вертикальная высота

Rhombus

Area = a [times] h

a = side of rhombus

h = height

Circle

Area = πr 2

r = radius of the circle

= (22)/7 or 3.1416

Semicircle

Area = ½ πr 2

r = radius of круг

Volume Formula Chart for 3D Shapes(Solid Shapes)

H = высота

H = высота

H = высота

Name of Geometric Shapes

Volume Formula

Abbreviations Used

Cuboid

L [times] b[times] h

h = высота, 

l = длина b=ширина

Куб 9910003

a 3

a = length of the sides

Right Prism

Area of ​​Base [times] Height

. .

Правый круглый цилиндр

πr 2 H

R = радиус

H = высота

H = высота
H = высота

. ] Высота

..

Right Circular Cone

⅓ (πr 2 h)

r = radius

l = length

Sphere

4/3πr 3

r = radius

Hemisphere

⅔ (πr 3 )

r = radius

Разница между площадью и объемом

Некоторые ключевые различия между площадью и объемом в математике:

Площадь и объем объемные геометрические фигуры.

Объем – это пространство, занимаемое трехмерным объектом.

Площадь измерена для простых фигур

Объем измеряется для трехмерных (сплошных) фигур.

Площадь измеряется в двух измерениях: длине и ширине.

Объем измеряется в трех измерениях: длина, ширина и высота.

Площадь измеряется в квадратных единицах

Объем измеряется в кубических единицах.

Площадь охватывает космическое пространство объекта

Объем — это вместимость объекта

Пример: квадрат, прямоугольник, круг и т. д.

Пример: куб, прямоугольный параллелепипед, сфера и т. д.

Эти различия показывают соотношение между площадью и объемом. Поскольку теперь разница между площадью и объемом в математике ясна, давайте решим несколько примеров.

Решенные примеры

1. Стороны квадратного участка равны 9м. Найдите площадь квадратного участка.

Ответ: Дано, Сторона = a = 9 м

По формуле площади квадрата мы знаем, что

Площадь = a2

A = 9 x 9

A = 81 кв.м или 81

2. Сторона куба 9м. Найдите Объем кубического ящика.

Ответ: Дано, Сторона = a = 9м

По формуле Объема куба мы знаем, что

V = a3

V = 9 x 9 x 9

V = 729 кв.м или 729м2

Площадь и объем объекта зависят от размера конкретной формы или фигуры. В то время как площадь — это объем пространства, которое объект занимает в двухмерном пространстве, объем — это емкость формы или фигуры в трехмерном пространстве. Площадь формы — это количество места, которое занимает объект, а объем может быть определен как емкость или количество пространства, которое объект или форма имеет в себе. И то, и другое важно для определения аспектов и оценок в математике, проектировании и технике. Площадь связана как с плоскостями, так и со сплошными формами, тогда как объем рассчитывается только для сплошных форм. Количество краски, которое будет использовано при покраске комнаты, можно оценить, вычислив площадь этой комнаты, но количество воздуха в комнате или количество воды, которое может содержаться в этой комнате, можно оценить, вычислив объем этой комнаты. номер. Это означает, что площадь и объем могут быть тесно связаны, но существовать в совершенно разных измерениях пространства.

Область твердого тела Форма с определенной стороны или направления может быть объяснена как тень этой сплошной фигуры на определенной плоскости. Например, на определенной плоскости тень сферы с любого направления или стороны представляет собой круг, и, таким образом, площадь сферы с определенного направления представляет собой площадь круга с диаметром, равным диаметру сферы. Однако общая площадь поверхности сферы является отдельной величиной и равна площади четырех таких кругов, если смотреть с четырех перпендикулярных направлений. Точно так же для куба площадь одной грани куба равна площади квадрата, сторона которого равна стороне конкретного куба. Площадь конуса, если смотреть сбоку, то есть в направлении, перпендикулярном высоте конуса, будет казаться равной площади треугольника, имеющего соответствующий размер конуса, но если смотреть сверху или снизу, площадь конуса от это конкретное направление является площадью круга с радиусом, равным радиусу конуса.

Объем сплошных фигур не зависит от направления, с которого они анализируются. Объем куба имеет фиксированное значение независимо от того, с какой стороны его можно анализировать. Куб будет иметь ту же емкость и займет такое же количество места в трехмерной геометрии. Различные формулы для расчета площади, общей площади поверхности и объема различных форм и тел показаны в таблицах выше. Как видно из таблицы, площадь представляет собой двухмерное понятие и, соответственно, имеет единицу измерения (Длина) 9.0212 2 ., с другой стороны, Объем является трехмерным понятием и, следовательно, имеет единицу измерения (Длина) 3 .

Как связаны площадь и объем?

Площадь и Объем связаны в том смысле, что удлинение, расширение или вращение двухмерных Площадей в другом (третьем) измерении приведет к образованию цельной фигуры, имеющей Объем. Например, расширение круга по измерению высоты приведет к образованию цилиндра, расширение квадрата приведет к образованию куба определенного объема, вращение треугольника по любой из его осей приведет к формирование конуса определенного объема.

Можно ли рассчитать объем по площади?

Некоторые фигуры имеют один параметр, который требуется для расчета площади и объема объекта. Таким образом, если кто-то знает одну из Площади или Объема объекта, можно вычислить другую. Например, сфера имеет параметр радиуса, и с его помощью можно рассчитать как площадь, так и объем сферы, или, если кто-то знает одну из площади сферы или объема сферы, можно вычислить другой.

Однако это возможно не для всех рисунков.

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Площади многогранников решу егэ
  • Площади всех фигур егэ профиль математика
  • Площади боковых поверхностей всех фигур егэ профиль
  • Плохой отдых сочинение
  • Плохой опыт путешествия сочинение

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии