Топ 100 овр для егэ по химии

Нажмите, чтобы узнать подробности

100 ОВР, котрые помогут учащимся при сдаче ЕГЭ по химии.

1) 2KMnO4 + 3MnSO4 + 2H2O = 5MnO2 + K2SO4 + 2H2SO4

2) 2KMnO4 + 16HCl = 2MnCl2 + 5Cl2 + 8H2O + 2KCl

3) 5NaNO2 + 2KMnO4 + 3H2SO4 = 2MnSO4 + 5NaNO3 + K2SO4 + 3H2O

4) 10FeSO4 + 2KMnO4 + 8H2SO4 = 5Fe2(SO4)3 + 2MnSO4 + K2SO4 + 8H2O

5) 2KMnO4 + 5H2S + 3H2SO4 = 5S + 2MnSO4 + K2SO4 + 8H2O

6) 2KMnO4 + 5Na2SO3 + 3H2SO4 = MnSO4 + K2SO4 + 5Na2SO4 + 3H2O

7)SO2 + 2KMnO4 + 4KOH = K2SO4 + 2K2MnO4 + 2H2O

8) K2Cr2O7 + 3H2S + 4H2SO4 = Cr2(SO4)3 + 3S + K2SO4 + 7H2O

9) K2Cr2O7 + 3NaNO2 + 4H2SO4 = 3NaNO3 + Cr2(SO4)3 + K2SO4 + 4H2O

10) K2Cr2O7 + 6KI + 7H2SO4 = 3I2 + Cr2(SO4)3 + 4K2SO4 + 7H2O

11) 4Mg + 10HNO3(оч.разб.) = 4Mg(NO3)2 + NH4NO3 + 3H2O

12) Cr2(SO4)3 + 3Br2 + 16NaOH = 6NaBr + 2Na2CrO4 + 3Na2SO4 + 8H2O

13)Al2S3 + 30HNO3(конц.) = 2Al(NO3)3 + 3H2SO4 + 24NO2 + 12H2O

14) 6FeSO4 + 2HNO3 + 3H2SO4 = 3Fe2(SO4)3 + 2NO + 4H2O

15) FeCl2 + 4HNO3(конц.) = Fe(NO3)3 + 2HCl + NO2 + H2O

16) AlP + 11HNO3(конц.) = H3PO4 + 8NO2 + Al(NO3)3 + 4H2O

17) 6FeSO4 + KClO3 + 3H2SO4 = 3Fe2(SO4)3 + KCl + 3H2O

18) 3MnSO4 + 2KClO3 + 12KOH = 3K2MnO4 + 2KCl + 3K2SO4 + 6H2O

19) 2Al + K2Cr2O7 + 7H2SO4 = Al2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O

20) 3P2O3 + 2HClO3 + 9H2O = 6H3PO4 + 2HCl

21) Cr2(SO4)3 + 6KMnO4 + 16KOH = 2K2CrO4 + 6K2MnO4 + 3K2SO4 + 8H2O

22) Cr2O3 + 3KNO3 + 4KOH = 2K2CrO4 + 3KNO2 + 2H2O

23) 2NaNO2 + 2NaI + 2H2SO4 = 2NO + I2 + 2Na2SO4 + 2H2O

24) 8KI + 9H2SO4(конц.) = 4I2 + H2S + 8KHSO4 + 4H2O

25) Cu + 2FeCl3 = CuCl2 + 2FeCl2

26) 3PH3 + 4HClO3 = 3H3PO4 + 4HCl

27) 3NO2 + H2O = NO + 2HNO3

28) I2 + K2SO3 + 2KOH = 2KI + K2SO4 + H2O

29) 2NH3 + 3KClO = N2 + 3KCl + 3H2O

30) 6P + 5HClO3 + 9H2O = 5HCl + 6H3PO4

31) 3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO

32) Ca(ClO)2 + 4HCl = CaCl2 + 2Cl2 + 2H2O

33) 3H2S + HClO3 = 3S + HCl + 3H2O

34) Fe2(SO4)3 + 2KI = 2FeSO4 + I2 + K2SO4

35) 2KMnO4 + KI + H2O = 2MnO2 + KIO3 + 2KOH

36) I2 + 10HNO3(конц.) = 2HIO3 + 10NO2 + 4H2O

37) 3As2S3 + 28HNO3 + 4H2O = 6H3AsO4 + 28NO + 9H2SO4

38) 4Mg + 5H2SO4(конц.) = 4MgSO4 + H2S + 4H2O

39) MnO2 + 2KBr + 2H2SO4 = MnSO4 + Br2 + K2SO4 + 2H2O

40) 5HCOH + 4KMnO4 + 6H2SO4 = 5CO2 + 2K2SO4 + 4MnSO4 + 11H2O

41) 3KNO2 + 2KMnO4 + H2O = 3KNO3 + 2MnO2 + 2KOH

42) NaClO + 2KI + H2SO4 = I2 + NaCl + K2SO4 + H2O

43) 2KNO3 + 6KI + 4H2SO4 = 2NO + 3I2 + 4K2SO4 + 4H2O

44) 14HCl + K2Cr2O7 = 3Cl2 + 2CrCl3 + 2KCl + 7H2O

45) 2Cr(OH)3 + 3Cl2 + 10KOH = 2K2CrO4 + 6KCl + 8H2O

46) K2MnO4 + 8HCl = MnCl2 + 2Cl2 + 2KCl + 4H2O

47) K2Cr2O7 + 3Na2SO3 + 4H2O = 2Cr(OH)3 + 3Na2SO4 + 2KOH

48) 2KMnO4 + 10KBr + 8H2SO4 = 2MnSO4 + 5Br2 + 6K2SO4 + 8H2O

49) 4Zn + KNO3 + 7KOH = NH3 + 4K2ZnO2 + 2H2O

50) 2Fe(OH)3 + 3Br2 + 10KOH = 2K2FeO4 + 6KBr + 8H2O

51) P2O3 + 6KOH + 2NO2 = 2NO + 2K3PO4 + 3H2O

52) 2KMnO4 + 2NH3 = 2MnO2 + N2 + 2KOH + 2H2O

53) 3Na2SO3 + 2KMnO4 + H2O = 3Na2SO4 + 2MnO2 + 2KOH

54) 3NaNO2 + Na2Cr2O7 + 8HNO3 = 5NaNO3 + 2Cr(NO3)3 + 4H2O

55) B + HNO3(конц.) + 4HF = NO + HBF4 + 2H2O

56) 2CuCl2 + SO2 + 2H2O = 2CuCl + 2HCl + H2SO4

57) PH3 + 8AgNO3 + 4H2O = 8Ag + H3PO4 + 8HNO3

58) 2NH3 + 6KMnO4 + 6KOH = N2 + 6K2MnO4 + 6H2O

59) 5Zn + 2KMnO4 + 8H2SO4 = 5ZnSO4 + 2MnSO4 + K2SO4 + 8H2O

60) 3KNO2 + K2Cr2O7 + 8HNO3 = 5KNO3 + 2Cr(NO3)3 + 4H2O

61) FeS + 12HNO3(конц.) = Fe(NO3)3 + H2SO4 + 9NO2 + 5H2O

62) KIO3 + 5KI + 3H2SO4 = 3I2 + 3K2SO4 + 3H2O

63) 2NaCrO2 + 3Br2 + 8NaOH = 2Na2CrO4 + 6NaBr + 4H2O

64) Fe2(SO4)3 + Na2SO3 + H2O = 2FeSO4 + Na2SO4 + H2SO4

65) 3P2O3+ 2H2Cr2O7 + H2O = 2H3PO4 + 4CrPO4

66) 3Si + 4HNO3 + 18HF = 3H2SiF6 + 4NO + 8H2O

67) 5Na2SO3(нед.) + 2KIO3 + H2SO4 = I2 + K2SO4 + 5Na2SO4 + H2O

68) 2CrBr3 + 3H2O2 + 10NaOH = 2Na2CrO4 + 6NaBr + 8H2O

69) 8 KMnO4 + 5 PH3 + 12H2SO4 = 5H3PO4 + 8MnSO4 + 4K2SO4 + 12H2O

70) 3SO2 + K2Cr2O7 + H2SO4 = K2SO4 + Cr2(SO4)3 + H2O

71) 3P2O3 + 4HNO3 + 7H2O = 6H3PO4 + 4NO

72) 2NO + 3KClO + 2KOH = 2KNO3 + 3KCl + H2O

73) 5PH3 + 8KMnO4 + 12H2SO4 = 5H3PO4 + 4K2SO4 + 8MnSO4 + 12H2O

74) 5AsH3 + 8KMnO4 + 12H2SO4 = 5H3AsO4 + 4K2SO4 + 8MnSO4 + 12H2O

75) 2CuI + 4H2SO4(конц.) = 2CuSO4 + I2 + 4H2O + 2SO2

76) Si + 2KOH + H2O = K2SiO3 + 2H2 (to)

77) B + 3HNO3 = H3BO3 + 3NO2

78) 8NH3 + 3Br2 = N2 + 6NH4Br

79) P4 + 3KOH + 3H2O = PH3 + 3KH2PO2

80) Al2O3 + 3C + 3Cl2 = 2AlCl3 + 3CO(to)

81) H2S + HClO = S + HCl + H2O

82) 5KNO3(расплав) + 2P = 5KNO2 + P2O5

83) I2 + 5Cl2 + 6H2O = 2HIO3 + 10HCl

84) H2S + 4Cl2 + 4H2O = H2SO4 + 8HCl

85) 8Zn + 5H2S2O7 = 8ZnSO4 + 2H2S + 3H2O

86) 2FeCl3 + 3Na2S = 2FeS + S + 6NaCl

87) Na2S + 8NaNO3 + 9H2SO4 = 10NaHSO4 + 8NO2 + 4H2O

88) Cr2O3 + 3NaNO3 + 2Na2CO3 = 2Na2CrO4 + 3NaNO2 + 2CO2

89) 5C + Ca3(PO4)2 + 3SiO2 = 2P + 5CO + 3CaSiO3 (to)

90) 2NaI + H2O2 + H2SO4 = Na2SO4 + I2 + 2H2O

91) 14HBr + K2Cr2O7 = 2CrBr3 + 3Br2 + 7H2O + 2KBr

92) 2NH3 + 2KMnO4(тв.) = N2 + 2MnO2 + 2KOH + 2H2O (to)

93) 2FeCl3 + SO2 + 2H2O = 2FeCl2 + H2SO4 + 2HCl

94) 2HMnO4 + 5H2S + 2H2SO4 = 5S + 2MnSO4 + 8H2O

95) 3KNO3 + 8Al + 5KOH + 18H2O = 3NH3 + 8K[Al(OH)4]

96) 5H2O2 + 2KMnO4 + 3H2SO4 = 5O2 + 2MnSO4 + K2SO4 + 8H2O

97) P4 + 20HNO3 = 4H3PO4 + 20NO2 + 4H2O

98) 3NaClO + 4NaOH + Cr2O3 = 2Na2CrO4 + 3NaCl + 2H2O

99) Na2SO3 + 2KMnO4 + 2KOH = 2K2MnO4 + Na2SO4 + H2O

100) Cr2(SO4)3 + 3H2O2 + 10NaOH = 2Na2CrO4 + 3Na2SO4 +8H2O

По теме: методические разработки, презентации и конспекты

Программа краткосрочного элективного курса предпрофильной подготовки учащихся (9 класс) «Окислительно-восстановительные реакции»

Рабочая программа для занятий по химии на уроках предпрофильной подготовки в 9 классе….

Окислительно-восстановительные реакции — электронная презентация для подготовки учащихся к выполнению задания С1 на ЕГЭ по химии

Данный материал может быть использован для подготовки учащихся к сдаче ЕГЭ по химии, а также может быть полезен для работы с детьми интересующимися предметом химия….

Методическая разработка урока химии в 11 классе в контексте подготовки к ЕГЭ по теме «ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ»

Урок построен на основе разбора заданий ЕГЭ по теме «Окислительно-восстановительные реакции», подобранных из контрольно-измерительных материалов ЕГЭ 2014 года и предыдущих лет, открытого банка з…

Окислительно-восстановительные реакции на примере перекиси водорода. Подготовка к ЕГЭ.

 Теория и короткие научно-исследовательские работы с использованием перекиси водорода. Для опытов отобраны реакции, имеющие важное значение  в химии,  экологии, которые можно проводить для подготовки …

Окислительно-восстановительные реакции на примере перекиси водорода. Подготовка к ЕГЭ.

Теория и короткие научно-исследовательские работы с использованием перекиси водорода. Для опытов отобраны реакции, имеющие важное значение  в химии,  экологии, которые можно проводить для по…

Доклад «Подготовка к ЕГЭ. Окислительно-восстановительные реакции»

Окислительно-восстановительные реакции (ОВР)  – химические реакции, в которых происходит изменение степеней окисления атомов, входящих в состав реагирующих веществ….

Тестовый материал для подготовки к ЕГЭ по теме «Степень окисления. Окислительно-восстановительные реакции»

В данном документе собрано большое количество тестовых заданий для проверки знаний обучающихся по теме «Степень окисления. Окислительно-восстановительные реакции» и подготовке к ЕГ…

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

Все реакции из заданий 32, которые могут вызвать затруднения при составлении. На ЕГЭ 99% реакций в заданиях 32 будут либо они, либо аналогичные.

1) Si + 2Cl2  SiCl4

2) SiCl4 + 3H2O H2SiO3 + 4HCl

3) Ca3(PO4)2 + 5C + 3SiO2  2P + 5CO + 3CaSiO3

4) Ca3N2 + 6H2O 3Ca(OH)2 + 2NH3

5) 2NH3 + 3CuO  3Cu + 3H2O + N2

6) Cu + 4HNO3(конц.) Cu(NO3)2 + 2NO2↑ + 2H2O

7) 2Cu(NO3)2  2CuO + 4NO2 + O2

8) 4FeS + 7O2  2Fe2O3 + 4SO2

9) 2H2S + SO2 3S↓ + 2H2O

10) S + 6HNO3  H2SO4 + 6NO2↑ + 2H2O

11) 4Al(NO3)3  2Al2O3 + 12NO2↑ + 3O2

12) 2Al2O3 4Al + 3O2↑ (электролиз раствора Al2O3 в расплаве криолита)

13) 3KNO3 + 8Al + 5KOH + 18H2O  3NH3↑ + 8K[Al(OH)4]

14) CrO3 + 2KOH K2CrO4 + H2O

15) 2K2CrO4 + H2SO4 K2Cr2O7 + K2SO4 + H2O

16) 14HBr + K2Cr2O7 2CrBr3 + 3Br2 + 7H2O + 2KBr

17) H2S + Br2 S↓ + 2HBr

18) 3Mg + N2  Mg3N2

19) Mg3N2 + 6H2O 3Mg(OH)2↓ + 2NH3

20) Cr2(SO4)3 + 6NH3 + 6H2O 2Cr(OH)3↓ + 3(NH4)2SO4

21) 2Cr(OH)3 + 4KOH + 3H2O2 2K2CrO4 + 8H2O

22) 2Ag + 2H2SO4(конц.) Ag2SO4 + SO2↑ + 2H2O

23) 2KClO3  2KCl + 3O2↑ (в присутствии кат-ра)

24) 3Fe + 2O2   Fe3O4

25) Fe3O4 + 8HCl FeCl2 + 2FeCl3 + 4H2O

26) 6FeCl2 + 14HCl + K2Cr2O7 6FeCl3 + 2CrCl3 + 2KCl + 7H2O

27) 2Na + H2 2NaH

28)  NaH + H2O NaOH + H2

29) 2NO2 + 2NaOH NaNO2 + NaNO3 + H2O

30) 2Al + 2NaOH + 6H2O 2Na[Al(OH)4] + 3H2

31) Cu + 2H2SO4   CuSO4 + SO2↑ + 2H2O

32) 2CuSO4 + 4KI 2CuI↓ + I2↓ + 2K2SO4

33) 2NaCl + 2H2O H2↑ + Cl2↑ + 2NaOH (электролиз раствора)

34) Fe2O3 + 6HI 2FeI2 + I2↓ + 3H2O

35) Na[Al(OH)4]  + CO2 NaHCO3 + Al(OH)3

36) Al2O3 + Na2CO3 (тв.) 2NaAlO2 + CO2↑ (сплавление)

37) Al4C3 + 12HBr 4AlBr3 + 3CH4

38) 2AlBr3 + 3K2SO3 + 3H2O 2Al(OH)3↓ + 3SO2↑ + 6KBr

39) 3SO2 + K2Cr2O7 + H2SO4 K2SO4 + Cr2(SO4)3 + H2O

40) Zn + 2KOH + 2H2O K2[Zn(OH)4] + H2

41) K2[Zn(OH)4]  K2ZnO2 + 2H2O

42) K2ZnO2 + 4HCl 2KCl + ZnCl2 + 2H2O

43) HI + KHCO3 KI + H2O + CO2

44) 6KI + K2Cr2O7 + 7H2SO4 4K2SO4 + 3I2↓ + Cr2(SO4)3 + 7H2O

45) 2AlI3 + 3Na2S + 6H2O 2Al(OH)3↓ + 3H2S↑ + 6NaI

46) Fe3O4 + 10HNO3 3Fe(NO3)3 + NO2↑ + 5H2O

47) Fe2O3 + Fe  3FeO

48) 2Na + O2 Na2O2 (горение)

49)  Na2O2 + 4HCl 2NaCl + 2H2O + Cl2

50) 3Cl2 + 10KOH + Cr2O3  2K2CrO4 + 6KCl + 5H2O

51) K2CrO4 + BaCl2 BaCrO4↓ + 2KCl

52) 2Cu(NO3)2 + 2H2O 2Cu + O2↑ + 4HNO3 (электролиз раствора)

53) 6KOH + 3S K2SO3 + 2K2S + 3H2O

54) 6KHCO3 + Fe2(SO4)3 2Fe(OH)3↓ + 3K2SO4 + 6CO2

55) KH + H2O KOH + H2

56) K2ZnO2 + 2H2SO4 K2SO4 + ZnSO4 + 2H2O

57) FeSO4 + 2NH3 + 2H2O Fe(OH)2↓ + (NH4)2SO4

58)  Fe(OH)2 + 4HNO3(конц.) Fe(NO3)3 + NO2↑ + 3H2O

59) 2Fe(NO3)3 + 3K2CO3 + 3H2O 2Fe(OH)3↓ + 3CO2↑ + 6KNO3

60) 4NO2 + 2Ca(OH)2 Ca(NO3)2 + Ca(NO2)2 + 2H2O

61) 3Ca + 2P Ca3P2

62) Ca3P2 + 6H2O 3Ca(OH)2 + 2PH3

63) PH3 + 8NaMnO4 + 11NaOH 8Na2MnO4 + Na3PO4 + 7H2O

64) Na2MnO4 + Na2SO3 + H2O MnO2↓ + Na2SO4 + 2NaOH

65) P + 5HNO3 H3PO4 + 5NO2↑ + H2O

66) 4Zn + 2NO2  4ZnO + N2

67) 2NaNO3   2NaNO2 + O2

68) NaNO2 + NH4I  NaI + N2↑ + 2H2O

69) 2NaI + H2O2 + H2SO4 Na2SO4 + I2↓ + 2H2O

70) 3I2 + 6NaOH(р−р)  NaIO3 + 5NaI + 3H2O

71) H2O2 + Ag2O 2Ag↓ + O2↑ + H2O

72) 2ZnS + 3O2  2ZnO + 2SO2

73) Na2[Zn(OH)4]  Na2ZnO2 + 2H2O

74) 3Cu2O + Na2Cr2O7 + 10H2SO4 6CuSO4 + Cr2(SO4)3 + Na2SO4 + 10H2O

75) NaHCO3 + NaOH Na2CO3 + H2O

76) K2Cr2O7(тв.) + 14HCl(конц.) 2CrCl3 + 2KCl + 3Cl2↑ + 7H2O

77) 3NaNO2 + 2KMnO4 + H2O 2MnO2↓ + 2KOH + 3NaNO3

78) MnO2 + 4HCl(конц.) MnCl2 + Cl2↑ + 2H2O

79) 2Fe(OH)3 + 6HI 2FeI2 + I2↓ + 6H2O

80) 3Na2CO3 + 2CrBr3 + 3H2O 2Cr(OH)3↓ + 6NaBr + 3CO2

81) 5FeCl2 + KMnO4 + 8HCl 5FeCl3 + MnCl2 + KCl + 4H2O

82) K2SiO3(рр) + 2H2O + 2CO2 H2SiO3↓ + 2KHCO3

83)  Ba(OH)2 + 2NaHCO3 = Na2CO3 + BaCO3↓ + 2H2O (при избытке NaHCO3)
либо
Ba(OH)2 + NaHCO3 = BaCO3 + NaOH + H2O (при избытке Ba(OH)2)

84) 6KOH + 3Cl2  KClO3 + 5KCl + 3H2O

85) Cr2O3 + KClO3 + 4KOH 2K2CrO4 + KCl + 2H2O

86) 4NH3 + 5O2 4NO + 6H2O (кат. Pt, Cr2O3, t, p)

87) 2NO + O2 2NO2

88) NaNO2 + 2KMnO4 + 2KOH 2K2MnO4 + NaNO3 + H2O

89) 8KI(тв.) + 9H2SO4(конц.) 8KHSO4 + 4I2↓ + H2S↑ + 4H2O

90) Al2O3 + 2NaOH + 3H2O 2Na[Al(OH)4]

91) Na[Al(OH)4] + 4HNO3 NaNO3 + Al(NO3)3 + 4H2O

92) 2Ca(OH)2 + 4NO2 + O2 2Ca(NO3)2 + 2H2O

93) K[Al(OH)4] + SO2 KHSO3 + Al(OH)3

94) 8KOH + PCl5 K3PO4 + 5KCl + 4H2O

95) 2KBr(тв) + 2H2SO4(конц., гор.) K2SO4 + Br2 + SO2↑ + 2H2O

96) 3Br2 + 6KOH 5KBr + KBrO3 + 3H2O

97) Br2 + K2SO3 + 2NaOH 2NaBr + K2SO4 + H2O

98) Fe2O3 + 6HI 2FeI2 + I2 + 3H2O

99) Fe2O3 + 2NaOH(тв.) 2NaFeO2 + H2O (сплавление)

100) 4NO2 + O2 + 2H2O 4HNO3

101) NaFeO2 + 4HNO3(изб.) NaNO3 + Fe(NO3)3 + 2H2O

102) FeO + 4HNO3(конц.) Fe(NO3)3 + NO2↑ + 2H2O

103) Ca2Si + 4H2O 2Ca(OH)2 + SiH4

104) 3Na2SO3 + Na2Cr2O7 + 4H2SO4 Cr2(SO4)3 + 4Na2SO4 + 4H2O

105) 4Mg + 5H2SO4(конц.) 4MgSO4 + H2S↑ + 4H2O

106) CuS + 10HNO3  Cu(NO3)2 + H2SO4 + 8NO2 + 4H2O
либо (одинаково верно)
CuS + 8HNO3(конц.) CuSO4 + 8NO2↑ + 4H2O

107) 3Cu + 8HNO3(разб.) 3Cu(NO3)2 + 2NO↑ + 4H2O

108) 2Cu(NO3)2 + 2H2O 2Cu↓ + O2↑ + 4HNO3 (электролиз раствора)

109) Cu2O + 3H2SO4(конц.) 2CuSO4 + SO2↑ + 3H2O

110) 2NaI + 2NaMnO4 I2↓ + 2Na2MnO4 (в щелочном растворе)

111) 2Na2O2 + 2CO2  2Na2CO3 + O2

112) 8NaOH(р-р, изб.) + Al2S3  2Na[Al(OH)4] + 3Na2S

113) 4Ca + 5H2SO4(конц.)  H2S↑ + 4CaSO4↓ + 4H2O

114) 2Fe(OH)2 + H2O2  2Fe(OH)3

115) Na2O2 + 2H2O(хол.)  H2O2 + 2NaOH

116) Ag2S + 10HNO3(конц.) = 2AgNO3 + H2SO4 + 8NO2 + 4H2O
либо (одинаково верно)
Ag2S + 8HNO3 → Ag2SO4 + 8NO2 + 4H2O

1. Окислители и восстановители
2. Классификация окислительно–восстановительных реакций
3. Основные правила составления ОВР
4. Общие закономерности протекания ОВР
5. Основные схемы ОВР
5.1. Схема восстановления перманганатов
5.2. Схема восстановления хроматов/бихроматов
5.3. Разложение нитратов
5.4. Окислительные свойства азотной кислоты
5.5. Взаимодействие металлов с серной кислотой
5.6. Пероксид водорода

Окислительно-восстановительные реакции — это химические реакции, сопровождающиеся изменением степени окисления у атомов реагирующих веществ. При этом некоторые частицы отдают электроны, а некоторые получают.

Окислители и восстановители

Окислители — это частицы (атомы, молекулы или ионы), которые принимают электроны в ходе химической реакции. При этом степень окисления окислителя понижается. Окислители при этом восстанавливаются.

Восстановители — это частицы (атомы, молекулы или ионы), которые отдают электроны в ходе химической реакции. При этом степень окисления восстановителя повышается. Восстановители при этом окисляются.



Химические вещества можно разделить на типичные окислители, типичные восстановители, и вещества, которые могут проявлять и окислительные, и восстановительные свойства. Некоторые вещества практически не проявляют окислительно-восстановительную активность.

К типичным окислителям относят:

  • простые вещества-неметаллы с наиболее сильными окислительными свойствами (фтор F2, кислород O2, хлор Cl2);
  • сложные вещества, в составе которых есть ионы металлов или неметаллов с высокими положительными (как правило, высшими) степенями окисления: кислоты (HN+5O3, HCl+7O4), соли (KN+5O3, KMn+7O4), оксиды (S+6O3,  Cr+6O3)
  • соединения, содержащие некоторые катионы металлов, имеющих  высокие степени окисления: Pb4+, Fe3+, Au3+ и др.

Типичные восстановители – это, как правило:

  • простые вещества-металлы (восстановительные способности металлов определяются рядом электрохимической активности);
  • сложные вещества, в составе которых есть атомы или ионы неметаллов с отрицательной (как правило, низшей) степенью окисления: бинарные водородные соединения (H2S, HBr), соли бескислородных кислот (K2S, NaI);
  • некоторые соединения, содержащие катионы с минимальной положительной степенью окисления (Sn2+, Fe2+, Cr2+), которые, отдавая электроны, могут повышать свою степень окисления;
  • соединения, содержащие сложные ионы, состоящие из неметаллов с промежуточной положительной степенью окисления (S+4O3)2–, (НР+3O3)2–, в которых элементы могут, отдавая электроны, повышать свою положительную степень окисления.

Большинство остальных веществ может проявлять как окислительные, так и восстановительные свойства.


Типичные окислители и восстановители приведены в таблице.


В лабораторной практике наиболее часто используются следующие окислители:

  • перманганат калия (KMnO4);

  • дихромат калия (K2Cr2O7);

  • азотная кислота (HNO3);

  • концентрированная серная кислота (H2SO4);

  • пероксид водорода (H2O2);

  • оксиды марганца (IV) и свинца (IV) (MnO2, PbO2);

  • расплавленный нитрат калия (KNO3) и расплавы некоторых других нитратов .

К восстановителям, которые применяются в лабораторной практике относятся:

  • магний (Mg), алюминий (Al), цинк (Zn) и другие активные металлы;
  • водород (Н2) и углерод (С);
  • иодид калия (KI);
  • сульфид натрия (Na2S) и сероводород (H2S);
  • сульфит натрия (Na2SO3);
  • хлорид олова (SnCl2).

Классификация окислительно-восстановительных реакций 


Окислительно-восстановительные реакции обычно разделяют на четыре типа: межмолекулярные, внутримолекулярные, реакции диспропорционирования (самоокисления-самовосстановления), и реакции контрдиспропорционирования.

Межмолекулярные реакции протекают с изменением степени окисления разных элементов из разных реагентов. При этом образуются разные продукты окисления и восстановления.

2Al0 + Fe+32O3 → Al+32O3 + 2Fe0,

C0 + 4HN+5O3(конц) = C+4O2 ↑ + 4N+4O↑+ 2H2O.

Внутримолекулярные реакции – это такие реакции, в которых разные элементы из одного реагента  переходят в разные продукты, например:

(N-3H4)2Cr+62O7  → N20 ↑+ Cr+32O3 + 4 H2O,

2 NaN+5O-23 → 2 NaN+3O2 + O02↑.

Реакции диспропорционирования (самоокисления-самовосстановления) – это такие реакции, в которых окислитель и восстановитель – один  и тот же элемент одного реагента, который при этом переходит в разные продукты:

3Br2 + 6 KOH → 5KBr + KBrO3 + 3 H2O,

Репропорционирование (конпропорционирование, контрдиспропорционирование) – это реакции, в которых окислитель и восстановитель – это один и тот же элемент, который из разных реагентов переходит в один продукт. Реакция, обратная диспропорционированию.

 2H2S-2 + S+4O2 = 3S + 2H2O

Основные правила составления окислительно-восстановительных реакций

Окислительно-восстановительные реакции сопровождаются процессами окисления и восстановления:

Окисление — это процесс отдачи электронов восстановителем.

Восстановление — это процесс присоединения электронов окислителем.

Окислитель восстанавливается, а восстановитель окисляется.

В окислительно-восстановительных  реакциях соблюдается электронный баланс: количество электронов, которые отдает восстановитель, равно количеству электронов, которые получает окислитель. Если баланс составлен неверно, составить сложные ОВР у вас не получится.

Используется несколько методов составления окислительно-восстановительных реакций (ОВР): метод электронного баланса, метод электронно-ионного баланса (метод полуреакций) и другие.

Рассмотрим подробно метод электронного баланса.

«Опознать» ОВР довольно легко — достаточно расставить степени окисления во всех соединениях и определить, что атомы меняют степень окисления:

K+2S-2 + 2K+Mn+7O-24 = 2K+2Mn+6O-24 + S0

Выписываем отдельно атомы элементов, меняющих степень окисления, в состоянии ДО реакции и ПОСЛЕ реакции.

Степень окисления меняют атомы марганца и серы:

S-2 -2e = S0

Mn+7 + 1e = Mn+6

Марганец поглощает 1 электрон, сера отдает 2 электрона. При этом необходимо, чтобы соблюдался электронный баланс. Следовательно, необходимо удвоить число атомов марганца, а число атомов серы оставить без изменения. Балансовые коэффициенты указываем и перед реагентами, и перед продуктами!

Схема составления уравнений ОВР методом электронного баланса:

Внимание! В реакции может быть несколько окислителей или восстановителей. Баланс необходимо составить так, чтобы ОБЩЕЕ число отданных и полученных электронов было одинаковым.

Общие закономерности протекания окислительно-восстановительных реакций

Продукты окислительно-восстановительных реакций зачастую зависят от условий проведения процесса. Рассмотрим основные факторы, влияющие на протекание окислительно-восстановительных реакций.

Самый очевидный фактор, определяющий — среда раствора реакции — кислая, нейтральная или щелочная. Как правило (но не обязательно), вещество, определяющее среду, указано среди реагентов. Возможны такие варианты:

  • окислительная активность усиливается в более кислой среде и окислитель восстанавливается глубже (например, перманганат калия, KMnO4, где Mn+7 в кислой среде восстанавливается до Mn+2, а в щелочной — до Mn+6);
  • окислительная активность усиливается в более щелочной среде, и окислитель восстанавливается глубже (например, нитрат калия KNO3, где N+5 при взаимодействии с восстановителем в щелочной среде восстанавливается до N-3);
  • либо окислитель практически не подвержен изменениям среды.

Среда протекания реакции позволяет определить состав и форму существования остальных продуктов ОВР. Основной принцип — продукты образуются такие, которые не взаимодействуют с реагентами!

Обратите внимание! Если среда раствора кислая, то среди продуктов реакции не могут присутствовать основания и основные оксиды, т.к. они взаимодействуют с кислотой. И, наоборот, в щелочной среде исключено образование кислоты и кислотного оксида. Это одна из наиболее частых, и наиболее грубых ошибок.

Также на направление протекания ОВР влияет природа реагирующих веществ. Например, при взаимодействии азотной кислоты HNO3 с восстановителями наблюдается закономерность — чем больше активность восстановителя, тем больше восстанавливается азот N+5.

При увеличении температуры большинство ОВР, как правило, проходят более интенсивно и более глубоко.

В гетерогенных реакциях на состав продуктов зачастую влияет степень измельчения твердого вещества. Например, порошковый цинк с азотной кислотой образует одни продукты, а гранулированный — совершенно другие. Чем больше степень измельчения реагента, тем больше его активность, как правило.

Рассмотрим наиболее типичные лабораторные окислители.

Основные схемы окислительно-восстановительных реакций

Схема восстановления перманганатов

 В составе перманганатов есть мощный окислитель — марганец в степени окисления +7. Соли марганца +7 окрашивают раствор в фиолетовый цвет.

Перманганаты, в зависимости от среды реакционного раствора, восстанавливаются по-разному.

В кислой среде восстановление происходит более глубоко, до Mn2+. Оксид марганца в степени окисления +2 проявляет основные свойства, поэтому в кислой среде образуется соль. Соли марганца +2 бесцветны. В нейтральном растворе марганец восстанавливается до степени окисления +4, с образованием амфотерного оксида MnO2 — коричневого осадка, нерастворимого в кислотах и щелочах. В щелочной среде марганец восстанавливается минимально — до ближайшей степени окисления +6. Соединения марганца +6  проявляют кислотные свойства, в щелочной среде образуют соли — манганаты. Манганаты придают раствору зеленую окраску.

Рассмотрим взаимодействие перманганата калия KMnO4 с сульфидом калия в кислой, нейтральной и щелочной средах. В этих реакциях продуктом окисления сульфид-иона является S0.

5 K2S + 2 KMnO4 + 8 H2SO4 = 5 S + 2 MnSO4 + 6 K2SO4 + 8 H2O,

3 K2S + 2 KMnO4 + 4 H2O = 2 MnO2↓ + 3 S↓ + 8 KOH,

Распространенной ошибкой в этой реакции является  указание на взаимодействие серы и щелочи в продуктах реакции. Однако, сера взаимодействует с щелочью в довольно жестких условиях (повышенная температура), что не соответствует условиям этой реакции. При обычных условиях правильно будет указывать именно молекулярную серу и щелочь отдельно, а не продукты их взаимодействия.

K2S + 2 KMnO4 –(KOH)= 2 K2MnO4 + S↓

При составлении этой реакции также возникают трудности. Дело в том, что в данном случае написание молекулы среды (КОН или другая щелочь) в реагентах не требуется для уравнивания реакции. Щелочь принимает участие в реакции, и определяет продукт восстановления перманганата калия, но реагенты и продукты уравниваются и без ее участия. Этот, казалось бы, парадокс легко разрешим, если вспомнить, что химическая реакция — это всего лишь условная запись, которая не указывает на каждый происходящий процесс, а всего лишь является отображением суммы всех процессов. Как определить это самостоятельно? Если действовать по классической схеме — баланс-балансовые коэффициенты-уравнивание металла, то вы увидите, что металлы уравниваются балансовыми коэффициентами, и наличие щелочи в левой части уравнения реакции будет лишним.

Перманганаты окисляют:

  • неметаллы с отрицательной степенью окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк — до +5;
  • неметаллы с промежуточной степенью окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

KMnO4 + неМе (низшая с.о.) = неМе0 + другие продукты

KMnO4 + неМе (промежуточная с.о.) = неМе(высшая с.о.) + др. продукты

KMnO4 + Ме0 = Ме (стабильная с.о.) + др. продукты

KMnO4 + P-3, As-3= P+5, As+5 + др. продукты

Схема восстановления хроматов/бихроматов

Особенностью хрома с валентностью VI является то, что он образует 2 типа солей в водных растворах: хроматы и бихроматы, в зависимости от среды раствора. Хроматы активных металлов (например, K2CrO4) — это соли, которые устойчивы в щелочной среде. Дихроматы (бихроматы) активных металлов (например, K2Cr2O7) — соли, устойчивые в кислой среде.

Восстанавливаются соединения хрома (VI)  до соединений хрома (III). Соединения хрома Cr+3 — амфотерные, и в зависимости от среды раствора они существуют в растворе в различных формах: в кислой среде в виде солей (амфотерные соединения при взаимодействии с кислотами образуют соли), в нейтральной среде — нерастворимый амфотерный гидроксид хрома (III) Cr(OH)3, и в щелочной среде соединения хрома (III) образуют комплексную соль, например, гексагидроксохромат (III) калия K3[Cr(OH)6].

Схема восстановления соединений хрома +6

Соединения хрома VI окисляют:

  •  неметаллы в отрицательной степени окисления до простых веществ (со степенью окисления 0), исключения фосфор, мышьяк – до +5;
  • неметаллы в промежуточной степени окисления до высшей степени окисления;
  • активные металлы из простых веществ (ст.окисления 0) до соединений со стабильной положительной степенью окисления металла.

Хромат/бихромат + неМе (отрицательная с.о.) = неМе0 + другие продукты

Хромат/бихромат + неМе (промежуточная положительная  с.о.) = неМе(высшая с.о.) + др. продукты

Хромат/бихромат + Ме0 = Ме (стабильная с.о.) + др. продукты

Хромат/бихромат + P, As (отрицательная с.о.) = P, As+5 + другие продукты

Разложение нитратов

Соли-нитраты содержат азот в степени окисления +5 — сильный окислитель. Такой азот может окислять кислород (О-2). Это происходит при нагревании нитратов. При этом в большинстве случаев кислород окисляется до степени окисления 0, т.е. до молекулярного кислорода O2.

В зависимости от типа металла, образующего соль, при термическом (температурном) разложении нитратов образуются различные продукты: если металл активный (в ряду электрохимической активности находятся до магния), то азот восстанавливается до степени окисления +3, и при разложении образуется соли-нитриты и молекулярный кислород.

Например:

2NaNO3 → 2NaNO2 + O2. 

Активные металлы в природе встречаются в виде солей (KCl, NaCl).

Если металл в ряду электрохимической активности находится правее магния и левее меди (включая магний и медь), то при разложении образуется оксид металла в устойчивой степени окисления, оксид азота (IV) (бурый газ) и кислород. Оксид металла образует также при разложении нитрат лития.

Например, разложение нитрата цинка:

2Zn(NO3)2 → 2ZnО + 4NO2 + O2.

Металлы средней активности чаще всего в природе встречаются в виде оксидов (Fe2O3, Al2O3 и др.).

Ионы металлов, расположенных в ряду электрохимической активности правее меди являются сильными окислителями. При разложении нитратов они, как и N+5, участвуют в окислении кислорода, и восстанавливаются до простых веществ, т.е. образуется металл и выделяются газы — оксид азота (IV) и кислород.

Например, разложение нитрата серебра:

2AgNO3 → 2Ag + 2NO2 + O2.

Неактивные металлы в природе встречаются в виде простых веществ.

Некоторые исключения!

Разложение нитрата аммония:

В молекуле нитрата аммония есть и окислитель, и восстановитель: азот в степени окисления -3 проявляет только восстановительные свойства, азот в степени окисления +5 — только окислительные.

При нагревании нитрат аммония разлагается. При температуре до 270 оС образуется оксид азота (I) («веселящий газ») и вода:

NH4NO3 → N2O + 2H2O

Это пример реакции контрдиспропорционирования.

Результирующая степень окиcления азота — среднее арифметическое степени окисления атомов азота в исходной молекуле.

При более высокой температуре оксид азота (I) разлагается на простые вещества — азот и кислород:

2NH4NO3 → 2N2 + O2 + 4H2O

При разложении нитрита аммония NH4NO2 также происходит контрдиспропорционирование.

Результирующая степень окисления азота также равна среднему арифметическому степеней окисления исходных атомов азота — окислителя N+3 и восстановителя N-3

NH4NO2 → N2 + 2H2O

Термическое разложение  нитрата марганца (II) сопровождается окислением металла:

Mn(NO3)2 = MnO2 + 2NO2

Нитрат железа (II) при низких температурах разлагается до оксида железа (II), при нагревании железо окисляется до степени окисления +3:

2Fe(NO3)2 → 2FeO + 4NO2 + O2 при 60°C
4Fe(NO3)2 → 2Fe2O3 + 8NO2 + O2 при >60°C

Нитрат никеля (II) разлагается до нитрита при нагревании до 150оС под вакуумом и до оксида никеля при более высоких температурах (разложения нитрата никеля в ЕГЭ по химии не должно быть, но это не точно)).

  Окислительные свойства азотной кислоты

Азотная кислота HNO3 при взаимодействии с металлами практически никогда не образует водород, в отличие от большинства минеральных кислот.

Это связано с тем, что в составе кислоты есть очень сильный окислитель — азот в степени окисления +5. При взаимодействии с восстановителями — металлами образуются различные продукты восстановления азота.

Азотная кислота + металл = соль металла + продукт восстановления азота + H2O

Азотная кислота при восстановлении может переходить в оксид азота (IV) NO2 (N+4); оксид азота (II) NO (N+2); оксид азота (I) N2O («веселящий газ»); молекулярный азот N2;  нитрат аммония NH4NO3. Как правило, образуется смесь продуктов с преобладанием одного из них. Азот восстанавливается при этом до степеней окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. При этом работает правило: чем меньше концентрация кислоты и выше активность металла, тем больше электронов получает азот, и тем более восстановленные продукты образуются.

Некоторые закономерности позволят верно определять основной продукт восстановления металлами  азотной кислоты в реакции:

  • при действии очень разбавленной азотной кислоты на металлы образуется, как правило, нитрат аммония NH4NO3;

Например, взаимодействие цинка с очень разбавленной азотной кислотой:

4Zn + 10HNO3 = 4Zn(NO3)2 + NH4NO3 + 3H2O

  • концентрированная азотная кислота на холоде пассивирует некоторые металлы — хром Cr, алюминий Al и железо Fe. При нагревании или разбавлении раствора реакция идет;

пассивация металлов — это перевод поверхности металла в неактивное состояние за счет образования на поверхности металла тонких слоев инертных соединений, в данном случае преимущественно оксидов металлов, которые не реагируют с концентрированной азотной кислотой

  • азотная кислота не реагирует с металлами платиновой подгруппызолотом Au, платиной Pt, и палладием Pd;
  • при взаимодействии концентрированной кислоты с неактивными металлами и металлами средней активности азотная кислота восстанавливается до оксида азота (IV) NO2;

Например, окисление меди концентрированной азотной кислотой:

Cu+ 4HNO3 = Cu(NO3)2 + 2NO2 + 2H2

  • при взаимодействии концентрированной азотной кислоты с активными металлами образуется оксид азота (I) N2O;

Например, окисление натрия концентрированной азотной кислотой:

8Na+ 10HNO3 = 8NaNO3 + N2O + 5H2

  • при взаимодействии разбавленной азотной кислоты с неактивными металлами (в ряду активности правее водорода) кислота восстанавливается до оксида азота (II) NO;
  • при взаимодействии разбавленной азотной кислоты с металлами средней активности образуется либо  оксид азота (II) NO, либо оксид азота N2O, либо молекулярный азот N2 — в зависимости от дополнительных факторов (активность металла, степень измельчения металла, степень разбавления кислоты, температура).
  • при взаимодействии разбавленной азотной кислоты с активными металлами образуется молекулярный азот N2.

Для приближенного определения продуктов восстановления азотной кислоты при взаимодействии с разными металлами я предлагаю воспользоваться принципом маятника. Основные факторы, смещающие положение маятника: концентрация кислоты и активность металла. Для упрощения используем 3 типа концентраций кислоты: концентрированная (больше 30%), разбавленная (30% или меньше), очень разбавленная (меньше 5%). Металлы по активности разделим на активные (до алюминия), средней активности (от алюминия до водорода) и неактивные (после водорода). Продукты восстановления азотной кислоты располагаем в порядке убывания степени окисления:

NO2; NO; N2O; N2; NH4NO3

Чем активнее металл, тем больше мы смещаемся вправо. Чем больше концентрация или меньше степень разбавления кислоты, тем больше мы смещаемся влево.

Например, взаимодействуют концентрированная кислота и неактивный металл медь Cu. Следовательно, смещаемся в крайнее левое положение, образуется оксид азота (IV), нитрат меди и вода.

 Взаимодействие металлов с серной кислотой

Разбавленная серная кислота взаимодействует с металлами, как обычная минеральная кислота. Т.е. взаимодействует с металлами, которые расположены в ряду электрохимических напряжений до водорода. Окислителем здесь выступают ионы H+, которые восстанавливаются до молекулярного водорода H2. При этом металлы окисляются, как правило, до минимальной степени окисления.

Например:

Fe + H2SO4(разб) = FeSO4 + H2

Концентрированная серная кислота взаимодействует с металлами, стоящими в ряду напряжений как до, так и после водорода.

H2SO4 (конц) + металл = соль металла + продукт восстановления серы (SO2, S, H2S) + вода 

При взаимодействии концентрированной серной кислоты с металлами образуются соль металла (в устойчивой степени окисления), вода и продукт восстановления серы — сернистый газ S+4O2, молекулярная сера S либо сероводород H2S-2, в зависимости от степени концентрации, активности металла, степени его измельчение, температуры и т.д. При взаимодействии концентрированной серной кислоты с металлами молекулярный водород не образуется!

Основные принципы взаимодействия концентрированной серной кислоты с металлами:

1. Концентрированная серная кислота пассивирует алюминий, хром, железо при комнатной температуре, либо на холоду;

2. Концентрированная серная кислота не взаимодействует с золотом, платиной и палладием;

3. С неактивными металлами концентрированная серная кислота восстанавливается до оксида серы (IV).

Например, медь окисляется концентрированной серной кислотой:

Cu0 + 2H2S+6O4(конц) = Cu+2SO4 + S+4O2 + 2H2O

4. При взаимодействии с активными металлами и цинком концентрированная серная кислота образует серу S либо сероводород H2S2- (в зависимости от температуры, степени измельчения и активности металла).

Например, взаимодействие концентрированной серной кислоты с цинком:

8Na0 + 5H2S+6O4(конц) → 4Na2+SO4 + H2S2 + 4H2O

Пероксид водорода

Пероксид водорода H2O2 содержит кислород в степени окисления -1. Такой кислород может и повышать, и понижать степень окисления. Таким образом, пероксид водорода проявляет и окислительные, и восстановительные свойства.

При взаимодействии с восстановителями пероксид водорода проявляет свойства окислителя, и восстанавливается до степени окисления -2. Как правило, продуктом восстановления пероксида водорода является вода или гидроксид-ион, в зависимости от условий проведения реакции. Например:

S+4O2 + H2O2-1 → H2S+6O4-2

При взаимодействии с окислителями перекись окисляется до молекулярного кислорода (степень окисления 0): O2. Например:

2KMn+7O4 + 5H2O2-1 + 3H2SO4 → 5O20 + 2Mn+2SO4 + K2SO4 + 8H2O

  • Главная


  • Теория ЕГЭ


  • Химия — теория ЕГЭ



  • Неорганические реакции в ЕГЭ по химии

Неорганические реакции в ЕГЭ по химии

20.01.2020

Сборник неорганических реакций из реальных заданий ЕГЭ прошлых лет (по химии).

Собрано более 100 реакций, а также правильных ответов к ним.

Ценность в том, что задания взяты именно из реальных кимов ЕГЭ.

  • Другая теория по химии для ЕГЭ

Смотреть в PDF:

Или прямо сейчас: cкачать в pdf файле.

Сохранить ссылку:

Комментарии (0)
Добавить комментарий

Добавить комментарий

Комментарии без регистрации. Несодержательные сообщения удаляются.

Имя (обязательное)

E-Mail

Подписаться на уведомления о новых комментариях

Отправить

Вверх

Будьте в симбиозе со Studarium

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • Топ 100 дат по истории россии егэ
  • Топ 10 ошибок на экзамене в гаи
  • Топ 10 ошибок егэ по истории
  • Топ 10 молитв перед экзаменом
  • Тоньше волоса как правильно егэ

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии