В каких заданиях егэ встречаются производные

Необходимая теория:

Производная функции

Таблица производных

Первообразная функции

Задание 7 Профильного ЕГЭ по математике — это задачи на геометрический и физический смысл производной. Это задачи о том, как производная связана с поведением функции. И еще (правда, очень редко) в этих задачах встречаются вопросы о первообразной.

Геометрический смысл производной 

Вспомним, что производная — это скорость изменения функции.

Производная функции fleft ( x right ) в точке x_0 равна угловому коэффициенту касательной, проведенной к графику функции в этой точке. Производная также равна тангенсу угла наклона касательной.

boldsymbol{f

1. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Производная функции f(x) в точке x_0 равна тангенсу угла наклона касательной, проведенной в точке x_0.

Достроив до прямоугольного треугольника АВС, получим:

f

Ответ: 0,25.

2. На рисунке изображён график функции y = f(x) и касательная к нему в точке с абсциссой x_0.
Найдите значение производной функции y = f(x) в точке x_0.

Начнём с определения знака производной. Мы видим, что в точке x_0 функция убывает, следовательно, её производная отрицательна. Касательная в точке x_0 образует тупой угол alpha с положительным направлением оси X. Поэтому из прямоугольного треугольника мы найдём тангенс угла varphi , смежного с углом alpha.

Мы помним, что тангенс угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему: tg varphi = 0, 25. Поскольку alpha + varphi = 180^{circ}, имеем:

tg alpha = tg(180^{circ} -varphi ) = - tg varphi = -0, 25.

Ответ: −0, 25.

Касательная к графику функции

3. Прямая y = - 4x - 11 является касательной к графику функции y = x^3 + 7x^2 + 7x - 6.

Найдите абсциссу точки касания.

Запишем условие касания функции y=fleft(xright) и прямой y=kx+b в точке x_0 .

При x= x_0 значения выражений fleft(xright) и kx+b равны.

При этом производная функции fleft(xright) равна угловому коэффициенту касательной, то есть k.

left{ begin{array}{c}fleft(xright)=kx+b \f^{

left{ begin{array}{c}x^3+{7x}^2+7x-6=-4x-11 \{3x}^2+14x+7=-4 end{array}right..

Из второго уравнения находим x = -1 или x=-frac{11}{3}. Первому уравнению удовлетворяет только x = -1.

Физический смысл производной

Мы помним, что производная — это скорость изменения функции.

Мгновенная скорость — это производная от координаты по времени. Но это не единственное применение производной в физике. Например, cила тока — это производная заряда по времени, то есть скорость изменения заряда. Угловая скорость — производная от угла поворота по времени.

Множество процессов в природе, экономике и технике описывается дифференциальными уравнениями — то есть уравнениями, содержащими не только сами функции, но и их производные.

4. Материальная точка движется прямолинейно по закону x(t) = t^2 - 3t - 29, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t = 3 с.

Мгновенная скорость движущегося тела является производной от его координаты по времени. Это физический смысл производной. В условии дан закон изменения координаты материальной точки, то есть расстояния от точки отсчета: xleft(tright)=t^2-3t-29.

Найдем скорость материальной точки как производную от координаты по времени:

vleft(tright)=x В момент времени t=3 получим:

vleft(3right)=2cdot 3-3=3.

Ответ: 3.

Применение производной к исследованию функций

Каждый год в вариантах ЕГЭ встречаются задачи, в которых старшеклассники делают одни и те же ошибки.

Например, на рисунке изображен график функции — а спрашивают о производной. Кто их перепутал, тот задачу не решил.

Или наоборот. Нарисован график производной — а спрашивают о поведении функции.

И значит, надо просто внимательно читать условие. И знать, как же связана производная с поведением функции.

Если f, то функция f (x) возрастает.

Если f, то функция f (x) убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

f(x) возрастает точка максимума убывает точка минимума возрастает
f + 0 - 0 +

5. На рисунке изображен график функции y=f(x), определенной на интервале (-3; 9). Найдите количество точек, в которых производная функции f(x) равна 0.

Производная функции f { в точках максимума и минимума функции f(x). Таких точек на графике 5.

Ответ: 5.

6. На рисунке изображён график y = f — производной функции f(x), определённой на интервале (-6; 5). В какой точке отрезка [-1; 3] функция f(x) принимает наибольшее значение?

Не спешим. Зададим себе два вопроса: что изображено на рисунке и о чем спрашивается в этой задаче?

Изображен график производной, а спрашивают о поведении функции. График функции не нарисован. Но мы знаем, как производная связана с поведением функции.

На отрезке [-1;3] производная функции f(x) положительна.

Значит, функция f(x) возрастает на этом отрезке. Большим значениям х соответствует большее значение f(x). Наибольшее значение функции достигается в правом конце отрезка, то есть в точке 3.

Ответ: 3.

7. На рисунке изображён график функции y= f(x), определённой на интервале (-3; 8). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 1.

Прямая y=1 параллельна оси абсцисс. Найдем на графике функции y = f(x) точки, в которых касательная параллельна оси абсцисс, то есть горизонтальна. Таких точек на графике 7. Это точки максимума и минимума.

Ответ: 7.

8. На рисунке изображен график производной функции f(x), определенной на интервале (-7; 14). Найдите количество точек максимума функции f(x) на отрезке [-6; 9].

Очень внимательно читаем условие задачи. Изображен график производной, а спрашивают о точках максимума функции. В точке максимума производная равна нулю и меняет знак с «плюса» на «минус». На отрезке [-6; 9] такая точка всего одна! Это x=7.

Ответ: 1.

9. На рисунке изображен график производной функции f(x), определенной на интервале (-6; 5). Найдите точку экстремума функции f(x) на отрезке [-5; 4].

Точками экстремума называют точки максимума и минимума функции. Если производная функции в некоторой точке равна нулю и при переходе через эту точку меняет знак, то это точка экстремума. На отрезке [- 5; 4] график производной (а именно он изображен на рисунке) пересекает ось абсцисс в точке x = -2. В этой точке производная меняет знак с минуса на плюс.

Значит, x= -2 является точкой экстремума.

Первообразная и формула Ньютона-Лейбница

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x). Функции вида y = F(x) + C образуют множество первообразных функции y = f(x).

10. На рисунке изображён график y = F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-6; 6). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-4; 4] .

Функция F(x), для которой f(x) является производной, называется первообразной функции y = f(x).

Это значит, что на графике нужно найти такие точки, принадлежащие отрезку [-4; 4] , в которых производная функции F(x) равна нулю. Это точки максимума и минимума функции F(x). На отрезке [-4; 4] таких точек 4.

Ответ: 4.

Больше задач на тему «Первообразная. Площадь под графиком функции» — в этой статье

Первообразная функции. Формула Ньютона-Лейбница.

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание №7. Производная. Поведение функции. Первообразная u0026#8212; профильный ЕГЭ по Математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
09.03.2023

Каталог заданий.
Применение производной к исследованию функций


Пройти тестирование по этим заданиям
Вернуться к каталогу заданий

Версия для печати и копирования в MS Word

1

На рисунке изображен график производной функции f левая круглая скобка x правая круглая скобка , определенной на интервале  левая круглая скобка минус 6; 6 правая круглая скобка . Найдите промежутки возрастания функции f левая круглая скобка x правая круглая скобка . В ответе укажите сумму целых точек, входящих в эти промежутки.


2

На рисунке изображен график функции y = f(x), определенной на интервале (−6; 8). Определите количество целых точек, в которых производная функции положительна.


3

На рисунке изображен график функции y  =  f(x), определенной на интервале (−2; 12). Найдите сумму точек экстремума функции f(x).

Источник: ЕГЭ по математике 29.06.2021. Резервная волна. Центр. Вариант 402


4

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Подмосковье


5

На рисунке изображен график производной функции f(x), определенной на интервале (−8; 4). В какой точке отрезка [−7; −3] f(x) принимает наименьшее значение?

Источник: ЕГЭ по математике 07.06.2021. Основная волна. Санкт-Петербург

Пройти тестирование по этим заданиям

По мнению выпускников, задание № 11 — самое сложное в первой части ЕГЭ по математике. Ведь там… производная! На деле не стоит бояться — все задания можно решить, зная только 2 алгоритма. В этой статье я о них расскажу! А еще поделюсь полезным лайфхаком, как решать некоторые задания на производную в ЕГЭ, вообще не используя алгоритм и экономя драгоценное время.

производная егэ

Производная на ЕГЭ по математике. Как решать задание № 11?

Хочешь круто подготовится к ЕГЭ по математике? Тебе поможет учебный центр MAXIMUM! Все наши преподаватели сами сдавали этот экзамен на хороший балл. Мы ежегодно изучаем изменения ФИПИ и корректируем курсы, исходя из этого. Читай подробнее про наши курсы и выбирай подходящий!

Почему задания на производную решает только 40% выпускников?

Ни для кого не секрет, что профильный ЕГЭ по математике состоит из частей с кратким и развёрнутым ответом. В первой части всего 11 заданий. В том числе и интересующее нас задание № 11.

Задание № 11 проверяет, умеют ли выпускники работать с производной. По статистике его решают около 40% всех сдающих экзамен, что для первой части ЕГЭ по математике очень мало.

Проблема этого задания в том, что производную проходят только в середине 11 класса, когда уже активно идет подготовка к ЕГЭ по другим темам. Из-за этого школьники не успевают ее отработать.

Два прототипа задания № 11 ЕГЭ по математике

В этом номере есть всего два типа заданий, которые можно решить с помощью простых алгоритмов. Ученикам нужно лишь запомнить их и выучить таблицу производных.

производную егэ

Два прототипа

Сначала необходимо понять, что именно от нас хотят в задании — расскажу небольшой лайфхак. Многие ученики путают понятия «точка максимума / минимума» и «наибольшее / наименьшее значение». Дело в том, что точка экстремума – это x, а наибольшее или наименьшее значение – это у. Как не запутаться? Обрати внимание на слово-маркер «точка». Если ты видишь его, то речь идет об х, если этого слова нет, то речь об у.

Поиск точек экстремума

Теперь, когда мы разобрались, как не запутаться и понять, что необходимо найти в задаче, приступим к разбору самих заданий и алгоритмов к ним. Начнём с поиска точек экстремума. Чтобы провести анализ функции, необходимо определить основные этапы. У функции есть точки экстремума, в них производная равна нулю. Единственный способ, определить, является ли данная точка точкой максимума или минимума – это определить знаки производной до и после неё, если знак производной меняется с «–» на «+», то это будет точка минимума, а если с «+» на «–», то точка максимума. Таким образом общий порядок действий будет следующим:

производная егэ

Данному алгоритму подчиняются абсолютно все задания, в которых нужно найти точки экстремума.

Поиск наибольшего / наименьшего значения функции

Перейдём ко второму прототипу, в котором нужно найти наибольшее/наименьшее значение функции. Интересно, что второй прототип можно отличить даже визуально, потому что кроме самой функции вам будет дан ещё промежуток, ограничивающий функцию в двух точках [a; b]. Так как мы про эти точки ничего не знаем, их придётся дополнительно учитывать. В остальном начало этого алгоритма будет совпадать с предыдущим. Начинать всегда будем именно с точек экстремума, потом проверим, как ведёт себя функция в каждой точке экстремума, а также в начале и конце заданного промежутка, и в итоге запишем в ответ нужное значение функции.

производную егэ

Лайфак, чтобы решать задания на производную в ЕГЭ

Давайте посмотрим на некоторые задания, которые можно решить гораздо быстрее, не прибегая к использованию алгоритмов. Лайфхаки не работают на абсолютно всех заданиях, поэтому будьте аккуратны, применяя их!

Лайфхак, которые мы рассмотрим сегодня, будет опираться на знание формата экзамена. № 11 – задание из части с кратким ответом, ответ на который мы пишем в клеточки на бланке, а чего в этих клеточках не может быть? Очевидно, что бесконечную дробь, буквы 𝑒, ln(…), log(…), 𝜋, sin𝑥, бесконечность и прочие знаки мы не сможем записать, и это очень сильно упрощает нам задачу.

Разбираем лайфхак на примере

Чтобы выполнить данное задание, необходимо знать таблицу производных и немного порассуждать логически. Если мы пойдём по алгоритму, нам придётся брать производную от e в степени (x-9), а производная от данной функции будет равна тому же самому. И получается, что мы никак не можем избавиться от символа, которого просто не может быть в ответе.

Или можем? Есть замечательная степень, которая абсолютно любое основание может превратить в единицу — это 0. Таким образом, мы можем избавиться от е, если представим её степень (х – 9) равной нулю. Получается х – 9 = 0, тогда х = 9.

Но единственный ли это способ избавиться от «е»? На самом деле нет, так как есть ещё один множитель – скобка. Ее можно занулить, тогда занулится и всё произведение. Получим 10 – х = 0, тогда х = 10. Но не стоит забывать, что найти нас просят наименьшее значение ФУНЦИИ, поэтому теперь подставим найденные х в исходную функцию.

При х = 9 получаем 1, а при х = 10 получаем 0. Видим, что значение 0 меньше, чем 1, а значит именно его мы запишем в ответ. Обратите внимание, что оно достигается при х = 10, поэтому критично важно учитывать как степень экспоненты, так и множитель-скобку.

В этой статье мы рассмотрели два алгоритма, с помощью которых можно решить абсолютно любое задание № 11 ЕГЭ по математике. А еще вы узнали лайфхак, как можно выполнить задание на производную в ЕГЭ, не прибегая к использованию алгоритма, и сэкономить время!

  • Учите производную
  • Пользуйтесь алгоритмами
  • Не забывайте про крутые лайфхаки, но будьте внимательны, применяя их!

Если хочешь разобраться в остальных темах по математике и не только, почитай другие статьи в блоге и обрати внимание на наши онлайн-курсы. Уже более 150 тысяч выпускников подготовились с нами к ЕГЭ. Кстати, у меня на курсах MAXIMUM тоже можно поучиться!

Лучшие репетиторы для сдачи ЕГЭ

Задания по теме «Производная и первообразная функции»

Открытый банк заданий по теме производная и первообразная функции. Задания B7 из ЕГЭ по математике (профильный уровень)

Геометрические фигуры на плоскости: вычисление величин с использованием углов

Геометрические фигуры в пространстве: нахождение длины, площади, объема

Задание №1165

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b, учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y'(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений begin{cases} -24x_0+b=3,\-12x_0^2+bx_0-10=3x_0+2. end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

-21

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1164

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

График функции y=f(x), являющийся ломаной линией, составленной из трёх прямолинейных отрезков

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3.

Её площадь равна frac{4+3}{2}cdot 3=10,5.

Ответ

10,5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1163

Условие

На рисунке изображён график y=f'(x) — производной функции f(x), определённой на интервале (-4; 10). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

График y=f'(x)-производной функции f(x), определённой на интервале (-4; 10)

Показать решение

Решение

Как известно, функция f(x) убывает на тех промежутках, в каждой точке которых производная f'(x) меньше нуля. Учитывая, что надо находить длину наибольшего из них естественно по рисунку выделяются три таких промежутка: (-4; -2); (0; 3); (5; 9).

Длина наибольшего из них — (5; 9) равна 4.

Ответ

4

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1162

Условие

На рисунке изображён график y=f'(x) — производной функции f(x), определённой на интервале (-8; 7). Найдите количество точек максимума функции f(x), принадлежащих промежутку [-6; -2].

График y=f'(x) - производной функции f(x), определённой на интервале (-8; 7)

Показать решение

Решение

Из графика видно, что производная f'(x) функции f(x) меняет знак с плюса на минус (именно в таких точках будет максимум) ровно в одной точке (между -5 и -4) из промежутка [-6; -2]. Поэтому на промежутке [-6; -2] ровно одна точка максимума.

Ответ

1

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1161

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых производная функции f(x) равна 0.

График функции y=f(x), определённой на интервале (-2; 8)

Показать решение

Решение

Равенство нулю производной в точке означает, что касательная к графику функции, проведённая в этой точке, параллельна оси Ox. Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 5.

Ответ

5

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1160

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y'(x_0). Но y’=-2x+5, значит, y'(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

4

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1159

Условие

На рисунке изображён график функции y=f(x) и отмечены точки -6, -1, 1, 4 на оси абсцисс. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

График функции y=f(x) и отмечены точки -6, -1, 1, 4 на оси абсцисс

Показать решение

Решение

Проводим касательные к графику функции в точках с указанными абсциссами. Определяем, под каким углом они наклонены к положительному направлению оси Ox. Как известно, значение тангенса указанного угла это и есть значение производной в указанных точках.

В точках -1 и 4 касательные наклонены под острым углом, поэтому в этих точках значение производной отрицательно. Учитывая, что в точке x=-6 касательная наклонена под меньшим тупым углом (ближе к вертикальной прямой), значение производной в этой точке наименьшее.

Ответ

-6

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1158

Условие

На рисунке изображён график функции y=F(x) — одной из первообразных некоторой функции f(x), определённой на интервале (-5; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [-3; 4].

График функции y= F(x) - одной из первообразных функции f(x), на интервале (-5; 5)

Показать решение

Решение

Согласно определению первообразной выполняется равенство: F'(x)=f(x). Поэтому уравнение f(x)=0 можно записать в виде F'(x)=0. Так как на рисунке изображён график функции y=F(x), то надо найти те точки промежутка [-3; 4], в которых производная функции F(x) равна нулю. Из рисунка видно, что это будут абсциссы экстремальных точек (максимума или минимума) графика F(x). Их на указанном промежутке ровно 7 (четыре точки минимума и три точки максимума).

Ответ

7

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1157

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

График функции y=f(x) и касательная к нему в точке с абсциссой x_0

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол pi -alpha, который является тупым.

График функции y=f(x) и касательная к нему в точке с абсциссой x_0 с построенным углом к касательной

Как известно, tg(pi -alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg alpha =frac{AC}{CB}=frac{2-1}{-1-(-6)}=frac15. Отсюда по формулам приведения получаем: tg(pi -alpha ) =-tg alpha =-frac15=-0,2.

Ответ

-0,2

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Задание №1156

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b, учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y'(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений begin{cases} 32x_0+b=-2,\16x_0^2+bx_0+12=-2x_0-4. end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

-34

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Лучшие репетиторы для сдачи ЕГЭ

Сложно со сдачей ЕГЭ?

Звоните, и подберем для вас репетитора: 78007750928

9 ноября 2020

В закладки

Обсудить

Жалоба

Применение производной при решении заданий из ЕГЭ

«Производная» включена в ЕГЭ по математике профильного уровня (I часть): задание №7 (производная и первообразная) и №12 (наибольшее и наименьшее значении).

Также некоторые задачи из II части: №17 (финансовая задача), №18 (задачи с параметром) можно решать с помощью производной.

Цель данной статьи – рассмотреть систему изучения производной в школьном курсе, выявить трудности восприятия материала школьниками, показать некоторые методы обучения учащихся, помогающие лучшему усвоению ими данной темы.

proizvodnaya.docx
proizvodnaya.pdf

Муниципальное бюджетное общеобразовательное учреждение

« Средняя общеобразовательная школа № 52
г. Брянска»

Урок математики

в 11а классе.

Тема:

Применение производной в заданиях ЕГЭ

                                                                 Учитель
Руденок Е. В.

12.02.2014 г.

Тема : Применение производной в заданиях ЕГЭ.

Цель: 1.Обобщить и систематизировать знания
учащихся по теме

               
«Применение производной».

           2. Формировать
умения в решении заданий на установление  

               связи
свойств функции и свойств её производной с помощью

              
построения их графиков в одной системе координат.                                 

           3. Формировать
умения в решении заданий на геометрический смысл

              
производной.

           4.
Развитие самостоятельной деятельности учащихся в проблемной

              
ситуации.

Девиз урока: «Слушаю – забываю.

                      
     Смотрю – запоминаю.

                            Делаю
— понимаю»

                                            
Конфуций.  

Оборудование: компьютер, два монитора (один монитор для
демонстрации учащимся класса)

                                      
План урока.

 1.Начало урока. Организационный момент.

 Напоминание
материала, изучаемого на последних уроках:

первообразная,
вычисление первообразных.

Что такое
первообразная функции?  Как называется процесс отыскания функции по заданной
производной?

Что такое
дифференцирование?

Три понятия ФУНКЦИЯ,
ПОИЗВОДНАЯ, ПЕРВООБРАЗНАЯ связаны друг с другом.

Вот в этой
взаимосвязи мы сегодня и будем разбираться.

ФУНКЦИЯ  y = f(x)
производит на свет новую функцию
y = f(x).

ФУНКЦИЯ  y = f(x)
выступает в качестве «родителя», т. е. эта функция по отношению к функции
y = f(x) первичный
образ
или ПЕРВООБРАЗНАЯ.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для  x
принадлежащего Х выполняется равенство 
F’(x) = f(x).  

С понятием
первообразной мы знакомимся в 11 классе. Производную изучали в 10 классе.

Производная – одно из
фундаментальных понятий математики. Для решения задач на применение производной
требуется хорошее знание теоретического материала, умение проводить
исследование различных ситуаций.
При изучении тех или иных процессов и
явлений часто возникает задача определения скорости этих процессов.  Её решение приводит к понятию
производной. Сегодня мы будем говорить о применении производной в решении
математических задач на ЕГЭ по математике.

В каких заданиях части В на ЕГЭ применяется производная?.

Какие основные элементы содержания задания В 9?

1. График функции.

2. График производной.

3. Геометрический смысл производной.

4. Физический смысл производной.

5. Первообразная функции.

Рассмотрим таблицу, на которой показана связь свойств функции и знака её производной. Таблица
подготовлена заранее на боковой доске.

2. Презентация.

   Посмотрим
небольшую презентацию по теме урока, которая поможет вам вспомнить теорию,
необходимую для решения задач. (См. приложение 1)

3. Решение задач №
1 — № 6 с использованием программы
Winplotru.

Задача № 1.

Назвать промежутки
возрастания функции. Какой знак имеет производная при
x < 0
?

1.    
На рисунке изображены
графики двух функций. Ученикам предлагается отметить, где изображён график функции,
а где график её производной.

2.    
По выбору ученика для
решения задачи оставляется на экране монитора один график.

3.    
На координатной прямой
отметить стационарные точки, знаки производной и характер монотонности функции.

Ответ:
Функция возрастает при неотрицательных значениях
Х.

            При х<0  f (x)<0.

Задача №2.

1.   
Назвать стационарные
точки.

2.   
Назвать точку максимума
функции.

3.   
Как зависит монотонность
функции от знака производной ?

1.    
На рисунке изображены
графики двух функций. Ученикам предлагается отметить,  где изображён график
функции, а где график её производной.

2.    
По выбору ученика на
экране монитора оставлен график производной.

3.    
На координатной прямой
отметить стационарные точки, знаки производной и характер монотонности функции.

Ответ:
1.   а, 0, в

            2.   xmax = 0

            3.   При f (x)<0 функция убывает, при f (x)>0 функция
возрастает.

Задача № 3.

Чем является график  функция
y = f (x) для графика функции

у = f (x) ?

1.    
На рисунке изображены
графики двух функций. Отметьте, где изображён график функции, а где график её
производной.

2.    
График функции у = f (x) для графика
функции у =
f (x)
является графиком одной из первообразных.

3.    
Какой формулой задаётся
множество всех первообразных ?

(y = 1/3 x3 – x + C)

4.    
Чему равно С в нашем
случае? (С = -1)

5.    
На координатной прямой
отметить стационарные точки, знаки производной и монотонность функции.

6.    
Изменится ли монотонность
функции с изменением С? Почему?

 Показать в
программе
Winplotru движение графика y
=
f (x) с изменением С.

Задача № 4.

Прямая y = kx + m 
является касательной к графику функции

 y
= ¼
x— 2 x 2 – 2.
Найти
k и m.

1. Что надо знать,
чтобы ответить на вопрос этой задачи?

    Геометрический
смысл производной. (Как один из способов решения)

    f (x0) = tg α = k = 0,75 / 0,25 = 3.

2. Как найти m ?

    m = —
0,75

Ответ:
  
k = 3,       m = — 0,75.

Задача № 5.

1.   
Найти угловой коэффициент
касательной, проведённой к графику функции в точке, абсцисса которой равна: а)
-1; б) 3.

2.   
Определить характер
монотонности функции при 0<
x<3.

1.    
а) Отметить точку на
графике производной (-1;4), т.к.
kf (-1) =
4.

б) Отметить точку на графике производной (3;0), т.к. kf (3) = 0.

       Показать касательные в программе Winplotru.

2.   
При 0<x<3
функция убывает.

Ответ: 1. а) 4;  б) 0.

                2.  при
0<
x<3 функция убывает.

Задача № 6. (для самостоятельной работы)

Прямая y = 3 x— 4
является касательной к графику функции

y = 3 x2 -3x + C.

Найти С.

Что известно для того, чтобы начать решение
задачи?

 Коэффициент k = 3,    f (x0) = tg α = k.

f (x) =6х-3,

уравнение     

        6 x0 — 3 = 3,  x0 =1 – абсцисса точки касания,

  составим уравнение относительно С

      3*1 – 4 = 3*12 – 3*1 + С,

  откуда С =–1.

После решения учащимися задания проверяем, показывая
касание в

программе Winplotru.

Ответ: С = -1.

4. Решение заданий В9 ЕГЭ по математике. Самостоятельная
работа учащихся
с проверкой и комментарием (у закрытой  доски 2
человека) Условие заготовлено заранее.

1. Задание B9 (№ 6867)

На
рисунке изображен график функции y=f(x), определенной на
интервале (-6; 8). Определите количество
целых точек, в которых производная функции положительна.

task-1/ps/task-1.2

f (x)>0 на промежутках возрастания функции. При х = -2;  -1; 5;  6, т.
е. 4 точки.  Ответ: 4.

2. Задание B9 (№ 317845)

На рисунке изображён график y=f'(x) производной
функции f(x) и
восемь точек на оси абсцисс: x_1, x_2, x_3, dots, x_8. В скольких из этих
точек функция f(x) убывает?

b8_2_minus_1.0.eps

Функция убывает там, где
производная отрицательна. Таких точек 4:

X1X2X3X4

Ответ: 4.

5. Итог урока.

Какие задания для вас
сегодня показались наиболее сложными?

На что надо обращать
внимание в первую очередь в заданиях В9?

По статистике
правильно решают задание В9 около 64 % выпускников.

Надеюсь, что вы,
продолжив подготовку по этому заданию, сможете решить его на ЕГЭ. Поэтому кроме
домашнего задания вам предлагаются дополнительные задачи для самостоятельной
подготовки.

Дополнительные
задания для самоподготовки.

Задание B9 (№ 8305)

На рисунке изображен график y=f'(x) — производной функции f(x), определенной на интервале (-3; 14). Найдите промежутки убывания
функции f(x). В ответе укажите длину наибольшего
из них.

task-7/ps/task-7.5

Задание B9 (№ 317945)

На рисунке изображен график функции y=f(x) и
отмечены точки -2, -1, 1, 3. В какой из этих точек значение производной
наибольшее? В ответе укажите эту точку.

b8_3_min.0.eps

 

Задания B9 (№
323077)

На рисунке изображён график функции y=F(x) — одной из первообразных
некоторой функции f(x), определённой на интервале (-3;5). Пользуясь рисунком, определите
количество решений уравнения f(x)=0 на отрезке [-2;4].

b8_1_0.0.eps

Задание B9 (№ 9075)

На рисунке изображены график функции y=f(x) и
касательная к нему в точке с абсциссой x_0. Найдите значение
производной функции f(x) в точке x_0.

task-14/ps/task-14.26

 

 

 

 

 

Домашнее
задание.

Задание B9 (№ 317544)  На рисунке изображен график функции y=f(x) и отмечены точки -2, -1, 1, 4. В какой из этих
точек значение производной наименьшее? В ответе укажите эту точку.

b8_3_max.100.eps

Задание B9 (№ 6869)  На рисунке изображен график функции y=f(x), определенной на интервале (-5; 6). Определите количество целых
точек, в которых производная функции положительна
.

task-1/ps/task-1.4

Задание B9 (№ 8551) На рисунке изображен график y=f'(x) — производной
функции
 f(x), определенной на интервале (-10; 2). Найдите количество
точек, в которых касательная к графику функции
 f(x) параллельна
прямой
 y=-2x  -11 или совпадает с
ней.

task-8/ps/task-8.1

Задание B9 (№ 9057) На рисунке изображены
график функции
 y=f(x) и касательная к
нему в точке с абсциссой
 x_0. Найдите значение производной функции f(x) в точке x_0.

task-14/ps/task-14.8

Задание B9 (№ 323081)   На рисунке изображён график функции y=F(x) — одной из
первообразных некоторой функции
 f(x), определённой на интервале (-2;6). Пользуясь рисунком,
определите количество решений уравнения
 f(x)=0 на отрезке [-1;5].

b8_1_1.0.eps

Список и источники литературы

1.     
Мордкович А.Г. «Алгебра и начала анализа» Ч.1.
Учебник. Базовый уровень. Изд. Мнемозина

2.     
Мордкович А.Г. «Алгебра и начала анализа» Ч.2.
Задачник. Базовый уровень. Изд. Мнемозина

3.     
http://alexlarin.net/

4.     
http://maerenkovavv.ru/

5.     
http://www.mioo.ru/ogl.php

6.     
www.mathege.ru

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

$f'(x_0)={lim}↙{△x→0}{△f(x_0)}/{△x}$

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

Функция Производная
$c$ $0$
$x$ $1$
$x^n$ $nx^{n-1}$
${1}/{x}$ $-{1}/{x^2}$
$√x$ ${1}/{2√x}$
$e^x$ $e^x$
$lnx$ ${1}/{x}$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

$(f(x) ± g(x))’= f'(x)±g'(x)$

Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$

Производная суммы (разности) равна сумме (разности) производных.

$f'(x) = (3x^5 )’-(cos x)’ + ({1}/{x})’ = 15x^4 + sinx — {1}/{x^2}$

2. Производная произведения

$(f(x) · g(x))’= f'(x) · g(x)+ f(x) · g(x)’$

Найти производную $f(x)=4x·cosx$

$f'(x)=(4x)’·cosx+4x·(cosx)’=4·cosx-4x·sinx$

3. Производная частного

$({f(x)}/{g(x)})’={f'(x)·g(x)-f(x)·g(x)’}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f'(x)={(5x^5)’·e^x-5x^5·(e^x)’}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))’=f'(g(x))·g'(x)$

$f(x)= cos(5x)$

$f'(x)=cos'(5x)·(5x)’=-sin(5x)·5= -5sin(5x)$

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

$v(t) = x'(t)$

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

Решение:

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

$3t-3 = 12$

$3t = 15$

$t = 5$

Ответ: $5$

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

$k = tgα$

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

$f'(x_0) = k$

Следовательно, можем составить общее равенство:

$f'(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f'(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется экстремумом.

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Решение:

Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f'(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f'(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

Решение:

Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.

В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.

Ответ: $2$

Понравилась статья? Поделить с друзьями:

Новое и интересное на сайте:

  • В каких вузах отменили гос экзамены
  • В каких вузах обязательные вступительные экзамены
  • В каких вузах нужно егэ по английскому
  • В каких вузах нет гос экзаменов
  • В каких вузах нет вступительных экзаменов

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии